
Component 8/Unit 9a: Creating System Redundancy, Back Up and Decommissioning
Audio Transcript

Slide 1

Unit 8-9: Creating Fault Tolerant Systems, Backups, and Decommissioning, part a

Slide 2

As healthcare organizations adopt new technology to improve their efficiency, their dependence on that technology increases exponentially. However, what happens to all of these critical applications if a failure were to occur? What about the integrity of the caregiver’s data in the event of a disaster?

Today we will look at creating and maintaining a fault-tolerant system and discuss the importance of fault tolerance, before moving on to more details about fault tolerance.

In this segment we will also outline some backup strategies. And since we are on the subject of backing up, we will finish with some tips on archiving and decommissioning data and hardware.

Slide 3

As I just mentioned, dependence on EHR technology is increasing exponentially. This means there is a critical need for EHRs to have redundant, or “failover" resources, and fault tolerance to ensure uptime and data integrity.

A system is said to have a failure if the service it delivers to the user deviates from compliance with the system specification.

A fault is the adjudged cause of a failure. The significance of this is that, in the absence of precise requirements, it is impossible to tell whether a system has failed and, therefore, whether a fault has occurred.

Systems that have fault tolerance built into their hardware and/ or software to minimize downtime are said to have redundancy. For instance, most servers are purchased with redundant power supplies. In case the main power supply fails, the second power supply automatically takes over and an alert is sent to the administrator so a replacement can be installed.

Software can have fault tolerance built into the applications as well to ensure critical components are working correctly. It is important to have a frank discussion with your vendor about how fault tolerance is designed into the software code. There are ways to implement software fault tolerance into applications themselves to help achieve a degree of high availability.

Slide 4

According to a Forrester Consulting report from 2010, three-quarters of respondents experienced downtime related to a server failure during that past two years.

Sixty-eight percent had an impact on clinical activities, and greater than half affected administrative processes. Rarely was there no impact. Recovery times were typically measured in hours, not minutes. Only 1 percent of server outages were resolved within five minutes. Providers’ strategies for swapping servers and manual failovers are not medical grade.

In the healthcare setting, critical system downtime can equate to a significant potential impact on patient health even possibly death.

Slide 5

There are three levels at which fault tolerance can be applied.

Hardware:

Traditionally, fault tolerance has been used to compensate for faults in computing hardware. By managing extra hardware resources, the computer subsystem increases its ability to continue operation. Hardware fault tolerance techniques include redundant communications, replicated processors, additional memory, and redundant power/energy supplies. Hardware fault tolerance was particularly important in the early days of computing, when the time between machine failures was measured in minutes.

Software:

A second level of fault tolerance recognizes that a fault-tolerant hardware platform does not, in itself, guarantee high availability to the system user. It is still important to structure the computer software to compensate for faults such as changes in program or data structures due to design errors. This is defined as software fault tolerance. Mechanisms such as checkpoint/restart, recovery blocks and multiple-version programs are often used at this level.

System:

At a third level, the computer subsystem may provide functions that compensate for failures in other system facilities that are not computer-based. This is system fault tolerance. For example, software can detect and compensate for failures in sensors. Measures at this level are usually application-specific. It is important that fault tolerance measures at all levels be compatible.

Slide 6

Now let’s discuss six rules for approaching fault tolerance in your system.

Rule 1: Know precisely what the system is supposed to do. Part of this process should be determining how long a system can be allowed to deviate from its specification before the deviation is declared a failure.

However, it is not sufficient to know what the system is supposed to do under normal circumstances. It is also necessary to know what abnormal conditions the system must accommodate. It is virtually impossible to enumerate the set of all possible faults that a system might encounter. It is much more manageable to deal with classes of faults.

Rule 2: Look at what can go wrong, and try to group the causes into classes for easier manageability. This involves defining a fault floor based on your ability to diagnose and repair faults.

The goal of fault tolerance is to prevent faults from propagating to the system boundary, where it becomes observable and, hence, a failure. In general, the further a fault has propagated, the harder it is to deal with. Since fault tolerance is redundancy management, however, it becomes a matter of the degree of redundancy desired. For instance, it is almost certainly cheaper to deal with memory faults by using error-correcting memory (that is, redundant bits in a memory location) than by providing a "shadow" memory. Note, however, that dealing with faults earlier rather than later may go counter to the advice given above regarding dealing with classes of faults rather than individual faults.

Slide 7

Rule 3: Study your application and determine appropriate fault containment regions and the earliest feasible time to deal with potential faults.

In general, the price paid for a fault-tolerant system is additional resources, both in terms of time and space. As with most things, these two can be traded off against each other. In some applications, in flight control, for example, timing is everything, even at the cost of extra processors. In general, the comparison approach to fault detection works best in these situations. In other applications, such as a space probe, weight and power consumption is an overriding issue--arguing for a higher reliance on time redundancy and suggesting the use of acceptance tests.

Rule 4: Completely understand the requirements of your application and use them to make appropriate time/space trade-offs.

Protecting a system from every conceivable fault can exhaust another resource--money. This is true even if a rational set of fault classes is defined. The trade-off here is fault coverage versus the cost of that coverage. In all systems, it is possible to classify faults by the likelihood of occurrence.

Slide 8

Rule 5: Whenever possible, concentrate on the credible faults and ignore those less likely to occur unless they can be dealt with at little or no additional cost.

Time is an essential element in any digital computer system, even in systems that do not claim to be real-time. It is important to define the minimum period of time a system can fail to provide its defined service before a failure is declared. Unnecessarily short failure margins force the system designer to resort to expensive fault-tolerance mechanisms, such as real-time fault masking.

Rule 6: Carefully determine application failure margins and use the information to balance the degree of fault tolerance needed with the cost of implementation.

Slide 9

A high-reliability system is one of the key environmental considerations for IT systems deployed at the point of care. Hardware, software, and the network itself are all potential points of weakness in the perioperative setting.

Fault-tolerant servers provide the highest levels of availability, which is why their purchase price will be slightly higher than less-capable, conventional servers. Even though most high-end servers employ at least some redundant components -- like hot-swappable power supplies or error-correcting code memory -- these servers still fail when a non-redundant component such as a microprocessor fails. In a fault-tolerant server box, the redundant components execute the same instructions in lockstep, and self-checking technology detects and isolates errors at the component level. When a hard error occurs, the faulty component is taken out of service while the duplicate component continues normal processing.

Other server-based hardware features that add reliability and fault tolerance include:

· Hot-add memory to allow adding more RAM while the system is turned on and running, with no reboot required to recognize the new memory;

· Hot-swap hard disks to allow adding or removing SATA or SCSI disks while the system is turned on and running;

· Hot-plug PCI-X slots to allow adding or removing PCI cards while the system is turned on and running;

· Redundant power supplies and cooling fans to allow the system to continue to function when a power supply fails or a fan stops working.

The configuration complexity required to make clustered servers highly available puts their price on par with fault-tolerant systems, yet they are less reliable and more difficult to operate and maintain. Return on investment, or ROI, is best measured against the cost of downtime in terms of patient safety, lost productivity, financial consequences, exposure to litigation, or general disruption.

Lastly, consider purchasing additional servers to mirror you critical servers elsewhere on your network. If the main server room experiences fire or water damage, then these servers are already strategically placed and online. If that is not an option, then consider purchasing and configuring hot spare servers that can quickly be brought online should a production server experience catastrophic failure.

Although expensive, these strategies can provide a simple solution to ensuring near 100% uptime in business-critical environments and the expense of their integration reflects only a fraction of the cost associated with lost production or potential errors when one of these critical components fails.

Slide 10

Probably the most well-known fault-tolerant technology supported by Windows is software RAID, or Redundant Array of Independent Disks, which is available on systems where basic disks have been changed to dynamic disks. There are currently seven types of RAID strategies. Let’s discuss the two most commonly used:

RAID 1, or disk mirroring, is an excellent method for providing fault tolerance for boot/system volumes, while RAID 5, or disk striping with parity, increases both the speed and reliability of high-transaction data volumes, such as those hosting databases. RAID enabled filing systems can often function even if one or more storage devices completely fail and can even automatically rebuild the data once the device has been replaced. Software RAID means that RAID is implemented within Windows itself, but for even higher performance and greater fault tolerance you can choose to implement hardware RAID instead, though this is generally a more expensive solution than software RAID. Traditionally most software RAID systems have used SCSI, but another option common nowadays is SATA (Serial ATA), which is usually only a fraction of the cost of SCSI but with almost comparable performance.

There's more to RAID as far as fault tolerance in storage goes, however. By implementing the Distributed File System, or DFS, on your network and replicating DFS roots using the File Replication Service, or FRS, you can ensure maximum redundancy for shared volumes. This should allow users to access shared files on your network more easily, as well as when a particular file server goes down.

Using RAID has some trade-offs as well. For instance, the more redundant your RAID strategy is, the more disk space that’s required to provide the error checking and duplicate data. Be sure to research the various RAID strategies available and choose the best one suited to providing the performance and security you need while keeping within your budget.

Slide 11

Another useful strategy includes enabling Volume Shadow Copy Service, or VSS. This lets Windows keep point-in-time snapshots of data volumes so users can recover accidentally deleted files or revert to earlier versions of documents they are working on. While not strictly a fault tolerant technology, VSS does provide increased availability for user data and help protect it from accidental loss or destruction.

Slide 12

Virtual availability solutions are revolutionizing the availability market. Not only do they offer better choices for the enterprise customer, but with their lower cost and simplified approach, they are answering the demands of the small and medium environments for whom clustering systems isn't an option. Server virtualization enables multiple virtual operating systems to run on a single physical machine yet remain logically distinct with consistent hardware profiles.

Some advantages to virtualization include:

· Single operating environment to manage

· Single application license required

· Complete protection for the server, hardware, data, and network

· No single point of failure – complete redundancy of the storage and data

· Can utilize any type of storage – SAN, DAS, NAS

· Manageable with basic system management skills

· Supports all applications without any modifications

· Simple

· Less expensive to manage – Reduced total cost of ownership, or TCO

A virtual machine is independent of the physical hardware that it is running on, but there is still a requirement for protection against failures within the physical server hardware. Virtualization can increase business continuity on one hand by providing a method for quickly restoring corrupted or damaged virtual machines, or VMs, but consolidation of server resources increases the risk profile of the applications that are consolidated. However, virtualization of key storage and/or application servers, when combined with duplicate hardware hosting, can be an excellent availability strategy.

Lastly, when considering virtualization as an option, remember that some applications just do not run well inside a virtual environment: these tend to be programs that require large amounts of I/O or frequent memory access, rather than simply just CPU access. A large database, for example, can require more power and resources than can be delivered within a virtual machine environment; in this case, performance would suffer too much and a better approach would be to run the application on a physical server. It’s important to address these concerns with your vendor when considering virtualization as an option.

Slide 13

In healthcare settings, where many computer terminals are mobile, the use of a distributed architecture can help maintain access to the application in the event of a network interruption. For example, during a recent server shutdown at a local hospital, a distributed data management system prevented the loss of anesthesia data, which could have taken the hospital months to recover. Because the anesthesia workstations were thick clients and could function without connection to the server, they were able to continue running while all of the hospital’s other software systems (including remote and Web-based applications) were down.

Here are some suggestions with regard to system-wide enhancements to improve reliability of your network infrastructure:

· Install Uninterruptible Power Supplies, or UPS, to ensure systems can shut down properly when the electrical power to your site fails. This not only includes your server rooms, but network closets and critical access points as well.

· Install backup generators to allow critical systems to continue running during a long-term power blackout.

· Voltage filters, which are usually built into the UPS, should be made available to ensure voltage variations don't damage components or cause data corruption.

· Building redundancy and fault tolerance in network infrastructure switches and routers and WAN links can provide secondary network connections between sites should the primary network link go down.

· Lastly, redundant ISPs, or multihoming, will help to ensure highly reliable Internet access.

Slide 14

For Windows networks, using Network Load Balancing, or NLB, is also an option. This feature can be used to provide failover support for applications and services running on IP networks, for example web applications running on Internet Information Services, or IIS. Using NLB you can scale an application out to run on as many as 32 separate servers, and, while the main purpose of this approach is to increase availability and provide higher scalability, NLB also provides fault tolerance to increase reliability as well.

Slide 15

Let’s summarize what we’ve learned so far:

A failure is defined as deviating from compliance with the system specification when delivering a particular service to the user; while a fault is the adjudged cause of a failure.

Systems that have special hardware and/ or software features built in or added on to minimize downtime and keep the system up during a failure are said to have fault tolerance or redundancy.

Slide 16

When developing a fault tolerance strategy consider the six rules we discussed earlier:

· Know precisely what the system is supposed to do.

· Look at what can go wrong.

· Study your application (s)

· Completely understand application requirements & use them to make appropriate time/space trade-offs

· Concentrate on credible faults first

· Determine application failure margins.

Slide 17

When evaluating hardware for fault tolerance, consider using hardware designed with special redundancy features.

Consider the ROI against costs associated with downtime/ safety concerns

Consider hardware/ network redundancy and diversification over consolidation when focusing on fault tolerance. Hardware virtualization can also be beneficial for creating another layer of redundancy and minimizing downtime.

Lastly, remember, data storage poses additional challenges to ensure fault tolerance. RAID and Shadow Copy are two methods for adding fault tolerance to data storage that we discussed.

Component 8/Unit 9a
Health IT Workforce Curriculum
1

Version 2.0/Spring 2011
This material was developed by Duke University, funded by the Department of Health and Human Services,
Office of the National Coordinator for Health Information Technology under Award Number IU24OC000024.

