
Component4/Unit 6-2
Audio Transcript

Slide 1
Welcome to Component four, Introduction to Information and Computer Science; unit six, Databases [dey-tuh-beys-es] and SQL [see-kwuhl].
Slide 2
The focus of this lecture is on relational databases [dey-tuh-beys-es]. Relational databases [dey-tuh-beys-es] are the most common type of database in use today. Relational databases use unique keys to connect tables of a database. These connections are called relationships. Databases are designed using data modeling. SQL [see-kwuhl] is used to define, store and retrieve data in a database. A database is processed through a Database Management System or DBMS. We will also discuss the steps used to develop a relational database.

Slide 3
As we have previously seen, data about specific entities are kept in separate tables--patient data in one table and insurance company data in another. Often users want to retrieve data from more than one table. To do this the tables need to be connected so that related data can be retrieved. This is done though the creation of relationships between the tables. Relationships are created by storing key fields within the tables. An insurance company table might have a unique code that identifies a particular insurance company. If we also store this code in a patient table, once for each patient, then we can retrieve insurance information about a particular patient though this commonly stored code.
The code key stored in the insurance company table is called a primary key. Primary keys have to be unique so they reference one and only one row or record in the table. The same key value when stored in a table about a patient is called a foreign key. Foreign keys are not unique, for instance, many patients can share the same insurance company. When designing a database, candidate keys are identified and from the candidate keys a primary key will later be selected. Surrogate keys are an automatically generated primary key, while a natural primary key is something that already exists such as an account number or a social security number.
Slide 4
Data modeling is the process used to design a database. A data model is created based on what is known at a given time, but the data model is a volatile diagram because as more user information is acquired, adjustments to the model are made. This is why candidate keys are usually indicated instead of primary keys in the model since the changing conditions can easily have an impact on keys.
Usually a variation on an Entity-Relationship Model, more commonly called an ER-diagram, or ERD [E-R-D], is used for the data model. Entities are indicated in the ERD within boxes, with relationships represented by lines between entities. Cardinality [kard-ihn-al-ih-tee] speaks to the number of instances from one entity involved with a number of instances in the other entity or entities. In other words, a row in one entity can have a relationship with many rows in another entity. Maximum cardinality [kard-ihn-al-ih-tee] of the relationship is indicated within a diamond shape in an ERD with M:1 [em-to-one] represented here as an example. The diagram can be read either from left to right or right to left. Reading from left to right you can say "a patient is related to one insurance company" and from right to left, "an insurance company is related to possibly more than one patient".
Attributes of each entity are not shown here, but could be listed under the entity name. A crow's foot ERD uses a slightly different syntax than the original ERD. Instead of a diamond shape, cardinality [kard-ihn-al-ih-tee] of a relationship is indicated by a perpendicular slash for a cardinality [kard-ihn-al-ih-tee] of one and a "crow's foot" with more than one prong indicating a maximum cardinality [kard-ihn-al-ih-tee] of more than one. Maximum cardinalities [kard-ihn-al-ih-teez] are either one-to-one, one-to-many or many-to-many.
Slide 5
Data is defined, stored, manipulated, and later retrieved from a database by using Structured Query [kweer-ee] Language, or SQL [see-kwuhl]. SQL [see-kwuhl] can be written and submitted to the DBMS either directly or through an application program. Most user requests are made through an application program, while a database administrator and possibly someone in Health Informatics [in-fer-mat-iks] might create and submit the SQL [see-kwuhl] statement directly to the database.

Slide 6
A database is manipulated, controlled and monitored by a sophisticated software package called the Database Management System or DBMS. The DBMS contains information about what kind of data can be stored in a given attribute. This and other information about the database is stored in database tables called metadata [meh-duh-day-duh]. SQL [see-kwuhl] statements are carried out by, and results from the SQL [see-kwuhl] query [kweer-ee] are handled by, the DBMS. Stored procedures are program blocks containing SQL [see-kwuhl] code and are kept within and executed by the DBMS when a request is issued directly or through an application. Triggers are special cases of stored procedures that are automatically executed when specific situations occur or are about to occur to a table. The DBMS also handles security issues like assigning permissions to users so that they can see only data that they need to see. When problems occur the DBMS is used to solve them. Backups of the database are carried out by the DBMS and when necessary the database can be restored by the DBMS. The Database Administrator, or DBA, is responsible for the DBMS.
Slide 7
Database projects today are usually modifications of existing databases. This is because most databases have already been written. However, occasionally a database may need to be created from scratch. From existing data, user input, and existing files and forms a database can be designed that will meet all requirements of a data environment. This process takes some time, as the data model is developed toward the database design. Sometimes the project may involve merging two existing databases into a new database.

Slide 8
Whether you are developing a database from scratch or modifying an existing database, a database development life cycle should be used. This life cycle consists of phases in the development process. Specifications must be determined from user interviews and looking at existing files, forms and reports. A database model is developed while the specifications are being gathered. The model is continuously evaluated for compliance with the specifications as they come to light. Eventually the volatility of the data model settles down and a database design based on the model is created.
Testing can happen at any stage of the process to make sure that the database is capable of carrying out all of the specifications. Small prototype databases can facilitate testing. When testing is completed the database is implemented in the production work environment. Maintenance begins as soon as the database is implemented and will continue for the life of the database. At some point a modification of the database to meet some new requirement will result in the whole development life cycle being repeated.
Slide 9
Specifications for a database can come from many sources. Expert users can be invaluable in obtaining information about what is acceptable for attribute values. The acceptable values for an attribute constitute the attribute's domain. The domain involves things like whether the attribute holds characters or numeric values, the number of characters allowed for the attribute, and specific values that the attribute is allowed to contain. Business rules are also specifications that may need to be addressed in the database. Not all business rules will be addressed by the database; some business rules will be handled in the applications that call upon the database. Much of the information will come from users, but forms, reports and files should also be scrutinized for business specifications. Specification gathering may go on for some time. A data model should be used and kept up to date to document current known specifications. It can also be used as a communication tool between the designers and end-users.
Slide 10
In the design phase the data model progresses toward the database design as more specifications become known. Toward the end of this development process entities will solidify and become tables of the database, the attribute list will become stable, primary keys will be chosen from the candidate keys, and relationships will be carried out by indicating foreign keys.

Slide 11
During the specification gathering process each user, form, report and file will present a different view of the database. A user in the payroll department will want to see different data from an employee of the shipping and receiving department. All these different views will have to be supported by the database. This means that the database cannot and should not look like any one of the views. Instead the database design should be derived from the concept of establishing the most efficient storage of all the data needed by all the views.

Slide 12
Testing starts almost as soon as the specifications gathering phase. When the database designer conveys the specifications to the users, it is being tested for validity. Users can correct the information that is conveyed, resulting in a better understanding of the specifications. The data model and database design can be shown to the user for corroboration. This process is continuous up until the design is complete.

Slide 13
After the design is complete and the users have signed off on it, the implementation of the database can proceed. SQL [see-kwuhl] is used to create the database and its associated tables, attributes, and primary and foreign key relationships. SQL [see-kwuhl] is also used to create the stored procedures and triggers that when executed enforce business rules. The DBMS will also have built-in features that can be used to carry out business rules and attribute domain restrictions.
Slide 14
While the database design should be created to obtain the best logical design of the database without consideration of any physical limitations, the design must ultimately be carried out in the real, physical world of a DBMS. Not all DBMS products are created equal. The design may have to be adjusted to meet the physical limitations of the DBMS and the computer system. These adjustments should be kept to a minimum, however, to retain as much of the design as possible.

Slide 15
Once the database has been created from the design, it can be populated with test data. This data is sometimes copied from production files. SQL [see-kwuhl] queries [kweer-eez] can then be tested against the data to make sure that the database is performing according to plan. Issues discovered during testing may result in alterations to the design.

Slide 16
There are a number of types of ER models. In addition to the ER model created by Peter Chen in 1976 there is the Extended ER model; the Information Engineering model better know as the Crow's foot model; the Integrated Definition 1, Extended Version model or IDEF1X [eye-def-one-ex]; and the Unified Modeling Language model or UML. Three of them are of primary importance today – the Crow's foot model, IDEF1X [eye-def-one-ex] and UML. IDEF1X [eye-def-one-ex] is the government standard and the National Institute of Standards and Technology in 1993 developed a standard for IDEF1X [eye-def-one-ex]. UML is the newest of the models. Its dominance in the object-oriented computer language area for designing classes of objects has made UML highly favorable as a current design tool for databases. Beyond having application for relational database design, UML can be used for Object-oriented database design.

Slide 17
When developing the design for a database one of the primary things that has to be incorporated into the design are things that the user needs to keep track of. This can be people, places, things and documents. Once something has been identified that needs to be included in the design, it is given a name that describes it. In general things that are identified in this way are called entities. Entities are the idea of something. For instance the user may want to keep track of medical procedures. The entity name might be “med procedure”. Within “med procedure” there would be places for data that has something to do with a medical procedure, but there wouldn't be any actual data. An entity is only the idea or design of something, it is not an actual occurrence of something. The group of individual medical procedures makes up the entity. The entity instance is the individual or specific data, which is considered a medical procedure. Examples of "med procedure" instances are reflux surgery or appendectomy. Entities are designed based on real data but they do not contain real data. They are the blueprint for what will become tables in the implemented database.
Slide 18
In the design entity class, there will be places for data that are descriptors of the individuals within the entity. These are called attributes. Attributes must have a direct relationship with the entity. The values for attributes will define, describe, and identify an individual instance of an entity. You would not find the cost of a vacation trip to Hawaii in an entity for fast food restaurants. Instead you should find places for restaurant name, date of opening day, and gross monthly average. In a Customer entity you might expect an attribute for customer name. Attributes describe the entity. They can be shown in an ER model as balloons or ellipses hanging off the entity or in a list inside the entity. Both are shown in the pictures at the bottom of the slide.

Slide 19
Composite attributes are attributes that contain more than one piece of data. The example given here is for a patient address. Patient address is really made up of the patient street, patient city, patient state and patient zip. Composite attributes must be broken up into their parts as illustrated in the diagram. Multi-valued attributes are attributes that can contain more than one value.
The example given here is for the patient's dependents. A patient may have zero, one, two or more dependents. The number of dependents is unpredictable with no clearly defined upper boundary. Multi-value attributes are treated by creating another entity for dependents and moving the information about a dependent to the new entity. Most attributes have restrictions on what kind of data they should contain. Such restrictions define the domain of the attribute. For instance the attribute patient age might have a domain restriction of being numeric, greater than 0, and less than 120. Domain restrictions help validate data since data cannot be added to the database unless it meets the domain criteria.

Slide 20
Attributes that identify a row of data within the entity are called identifiers. Identifiers that uniquely identify a particular row within the entity are candidates to become the primary key for the entity. Non-unique identifiers can be used to access information in the entity, but additional information may be necessary to isolate the information being sought from other data selected with the same non-unique key. A person's name is an example of a non-unique identifier. Unless a surrogate key is used, one of the candidate keys must be chosen to become a natural primary key for the entity. It's important to know at this point that tables cannot contain duplicate rows. Primary keys, by their uniqueness, guarantee this rule.

Slide 21
There must be a way to selectively retrieve data from the database. Unique primary keys are used for this purpose as they will uniquely identify data. Primary key values should never change or at least should not change often because the data within other tables would have to be re-associated with the new primary key value.
Sometimes one attribute will not by itself uniquely identify a row of data within a table. When this happens two or more attributes used together as the primary key may be used to uniquely identify a row of data. This is called a composite key. Since it is more efficient to retrieve data when using short, numeric values, using a composite key will slow computer processing time.
When a natural primary key proves to be unsatisfactory or there isn't an attribute that uniquely identifies rows within the table, a surrogate key can be used. Surrogate keys are automatically generated, unique numeric values. Surrogate keys have the advantage of being short and numeric which speeds DBMS access to the table. The problem with surrogate keys is that they are not natural attributes and therefore have no meaning to the user. Values are assigned by the DBMS so they are not readily known to the user. Some argue that values of primary keys need not be meaningful to people and they should always be numeric and assigned by the computer.
Slide 22
Entities are related to one another using one of three different relationship classes or types determined by the maximum cardinality, one-to-one, one-to-many and many-to-many. In the crow's foot diagram example given for a one-to-one relationship a patient is related to one account and an account is related to one patient. Crow's foot diagrams use a perpendicular slash to indicate an occurrence of one. The crow's foot diagram is read left to right and right to left and the maximum cardinality is shown closest to the entity at the end of the read [reed].

The example for one-to-many is read as "a nurse is assigned to many hospital rooms" and "a hospital room is assigned to one nurse".
The last relationship class is many-to-many. In this example, a patient can have many procedures and a procedure can be performed on many patients. Many-to-many relationships may appear in the ER diagram, but cannot be implemented in the database. Another entity must be inserted between the two entities with a many-to-many relationship making two one-to-many relationships.
Slide 23
In addition to maximum cardinality the ER diagram can show a minimum cardinality. When the relationship shows maximum cardinality of one to many, the entity on the “one” side is sometimes referred to as the parent entity and the entity on the “many” side is referred to as the child. Thus in the example, Nurse is the parent entity and HospitalRooms is the child.
The minimum cardinality can be shown along with the maximum cardinality as is depicted in the example on this slide. Reading this Crow's foot diagram from left to right you would say "a nurse is responsible for from one to many hospital rooms" and from right to left as "a hospital room is attended by from zero to one nurse.
It is somewhat rare but an entity can have a relationship with itself. These are called recursive relationships. In the example a nurse might be associated with another nurse who is going to relieve him or her. Thus all nurses are in the table and some nurses have relationships with other nurses in the table via the nurse schedule.
An entity that is solely dependent for its existence on another entity is called a weak entity. An Employee entity might be related to a Dependents entity. Each Employee will have from zero to many Dependents. The Dependents entity is considered a weak entity whose existence depends on the existence of the Employee entity and whose only purpose is to support the Employee entity.
Sometimes a child entity will use the parent's entity as part of its composite primary key. In this example the primary insurance person in the family may be associated with other family members and the family member entity can use the insured health ID number as part of its primary composite key.
Slide 24
Sometimes there are entities that are categories of another entity. In the example in this slide there are different categories for nurses. They all are nurses and are shown to have relationships with the nurse entity. When this happens the different types are called subtypes of the super type. The super type in this case is nurse and the subtypes are floor nurse, critical care nurse and clinical research nurse. All three subtypes can inherit attributes from the super type. Thus if the entity nurse has an attribute of nurse's name, then all three subtypes do not have to have that attribute because they can inherit it from nurse.
When dealing with a specific nurse we would need to know which subtype the nurse belongs to. This is determined from an attribute in the nurse super type that is called a discriminator. The discriminator attribute has to have a value that indicates what type of nurse we are dealing with.
Different ER diagram models carry out super-to-subtype relationships in different ways. The super-to-subtype shown is a Crow's foot diagram. The X in the half moon shape means that the three nurse subtypes are exclusive -- a nurse can be a maximum of one of these types. If the X were not in the half moon shape then a nurse could be more than one subtype. IDEF1X [eye-def-one-ex] uses a different syntax and the meanings are slightly different as well. In IDEF1X [eye-def-one-ex], subtypes are either complete or incomplete, meaning that either the subtypes represent all possibilities or they do not.
Slide 25
Sometimes a clarification of a relationship can be accomplished by naming the relationship in the data model. This is especially true when two entities have more than one relationship between them. One example of how a relationship name might work is to create the name so that it describes the parent-to-child relationship followed by the child-to-parent relationship as in the example on this slide. If the relationship name is written so that it fits in a sentence between the two entities the relationship can be read from left to right as "a nurse is responsible for many hospital rooms" and from right to left as "a hospital room has an attending nurse".
Component 4/Unit 6-2
Health IT Workforce Curriculum
8
Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

