
Component 4/Unit 5-5
Audio Transcript

Slide 1

Welcome to Component 4: Introduction to Information and Computer Science. This is Unit 5: Overview of Programming Languages, Including Basic Programming Concepts. This is the fifth and final lecture for the unit.
Slide 2

Here are the objectives for Unit 5. After completing this unit, you should be able to:
· Define the purpose of programming languages
· Define the different types of programming languages
· Explain the continuum of programming languages from machine code and assembly languages through scripting languages and high level structured programming languages
· Explain the compiling and interpreting process for computer programs
· Use the following components of programming languages to build a simple program: variables, loops and conditional statements
· And, introduce additional programming concepts such as objects and modularity.
In this lecture we will focus on the final objective.
Slide 3

Object Oriented Programming (or OOP [O-O-P]) is a programming paradigm that is very popular today. It was first used in the 1960s, but didn't become popular until the 1980s and 1990s and today it is very widely used. Its popularity can be attributed to a couple of factors. First, it supports software engineering principles of modularity, which makes the programs easier to develop and maintain. Secondly, most commercial applications developed today contain a graphical user interface (or GUI [goo-ee] for short). GUIs [goo-eez] are comprised of windows, buttons and other widgets which are naturally expressed as objects. For that reason, many of the libraries that support GUI [goo-ee] programming (for example, WindowsAPI) are written in object oriented languages.
Slide 4

Objects in programming are similar to objects in our natural world. They have an identity; all objects are called something (like "chair" or "desk") so that people can refer to them. Similarly, each object has a name in a computer program. This name corresponds to a unique memory location where the object is stored. Natural objects have attributes; for example, a chair has attributes like height, color, and position. Objects in programs have data associated with them called instance variables. Finally, objects have behavior; these are the things that objects can do. We don't necessarily think that a chair has behavior, but it does--it supports the person sitting in it. Similarly, objects in programs have behavior--these are the methods that are defined for the object.
Object Oriented Programming is just one of many programming paradigms. It is one way of expressing a program for a given problem, but it is certainly not the only way. It's helpful to think of OOP [O-O-P] as a way of organizing your program so that the data and related methods are stored together. This particular type of organization allows for code reuse, both because it's modular but also because it allows for something called inheritance. Inheritance is when objects or classes inherit data and/or methods from other classes. This allows for less code redundancy.
Slide 5

It is important that we understand some terminology with respect to objects. Objects are not created until a program runs. When we write code for objects, we are writing classes. Classes are the code definition for objects; we can consider them the blueprints for an object. When a class is used--meaning when we create an object of a class--we are instantiating that object. It is similar to declaring a variable except that the data type is the class type, instead of a primitive type for a variable.
Slide 6

Let's look at two different ways we could write a code segment that calculates the area of a circle. On the left, we see a procedure that's been defined to do this. It has an input parameter for the radius and returns the calculated value of the area (pi [pahy] times radius squared). On the right, we see a class that's been defined for a circle. It has an instance variable that stores the radius and has two methods--one to set the value of the radius and one to calculate the area of the circle. Note that the calculateArea method does NOT need any input parameters since it stores the value of the radius in the instance variable.
From this example, it is not clear that either approach is better than the other. But let's suppose we want to add a method that will calculate the circumference of the circle. For the procedural programming approach, we would just add another procedure for the circumference calculation. Once again, we would need to have an input parameter for the radius (or diameter). For the OOP [O-O-P] approach, we can just add another method to the Circle class. We wouldn't need to change anything else and this method would not need input parameters since we would use the value of the instance variable radius in the calculation. If we want to calculate both the area and circumference of the same circle (i.e. for the same radius), it probably makes more sense to program the solution using the Circle class. We would be storing the two methods together along with the radius.
Slide 7

OOP programs are often designed using tools such as Unified Modeling Language (UML [U-M-L]). A UML diagram gives the basics about the class--the name, the attributes (instance variables) and the methods. This is very useful when building a design with all the classes in a program. It gives a snapshot of how the different classes are related and what they do.
This is an example design for a class called BMICalculator. In this class, let's assume we have 3 instance variables--doubles that store the weight, height and BMI for the class. Now let's assume that we have the following methods for this class: setWeight (sets the value of the weight instance variable), setHeight (sets the value of the height instance variable), calcBMI [kalk-B-M-I] (calculates the BMI and stores it in the bmi instance variable), outputBMI (prints the value of the bmi instance variable to the screen) and outputBMICategory which outputs to the screen the weight category for the BMI that's store in the instance variable.
Important note: This design is NOT for the program we wrote in the previous two lectures for calculating BMI. That program was a simple program that did not include any classes with instance variables and methods (just a class with a main method). Instead, this is what a class might look like if we decided to write one for calculating BMI.
Slide 8

Inheritance is a very powerful feature of OOP [O-O-P]. It allows us to define classes based on the definitions of other classes. Classes can inherit methods and/or instance variables from another class. This allows for a lot less code redundancy; we can define instance variables and methods for a class that can be included in many other classes without having to rewrite them in the other class definitions.
Another powerful feature of inheritance is polymorphism. This is a concept that's difficult to understand in the abstract; the basic idea is that the same method call will trigger different methods to run, based on the class type of the object. You do not need to understand polymorphism at this time, but it is important to know that it's possible with OOP [O-O-P] and inheritance.
Slide 9
Here's an example UML diagram that shows inheritance. In this diagram the base class or the parent class is the BankingAccount class. It has two instance variables defined--one for the account number and the other for the balance of the account. It also has four methods--one to set the value of the account number, another to set the value of balance, another to get the value of balance and finally, another to print all the account information to the screen.
There are two child classes: CheckingAccount and SavingsAccount. These two child classes inherit all the methods and instance variables from their parent Banking Account, but they also add more instance variables and methods to their classes. For example, CheckingAccount has three instance variables--the two inherited ones from Banking Account and one defined specifically for it (overdraft). Similarly, it has six methods--four that it inherits plus the two that's defined for it (setOverdraft and getOverdraft). SavingsAccount inherits the two instance variables from BankingAccount and has one additional one--interestRate. It also inherits four methods and has two additional methods--setInterestRate and accrueInterest.
The important concept to remember about inheritance is that the base class or the parent class defines instance variables and methods that are inherited by the child classes. This eliminates the need for the child classes to redefine these instance variables and methods in their own classes, which leads to less code redundancy. But, the child classes can also add their own instance variables and/or methods to the inherited ones. In this example, both CheckingAccount and SavingsAccount have instance variables named accountNum and balance, but only CheckingAccount has an instance variable named overdraft--SavingsAccount does not have this instance variable. Similarly, the SavingsAccount class has an instance variable interestRate that the CheckingAccount class does not.
Slide 10

Modularity is the separation of code into separate components. Objects provide modularity in object oriented programming languages, but non-object oriented languages support modularity, too. Procedures, subroutines and functions are all examples of modules in code. The purpose of modularity is to organize the code into separate components, each of which accomplishes a particular task. This allows for code reuse--the component is defined once, but can be called many times. Also, when the program is divided into components it is easier to maintain. Any changes to one component will have minimal effects to other components. Also, it is easier to identify which code needs modifying since it's separated by function. For example, if the format of a program's output is incorrect, we would know to look at the component that produces output.
Slide 11

Encapsulation builds on modularity to provide what's called "information hiding". Objects can specify whether instance variables and methods are public or private. If they are private, they cannot be accessed directly outside of the class. Typically, instance variables are private and some or all methods are public. When an instance variable is private, it cannot be accessed from outside the class, which prevents other code from changing its value. Instead, the class will provide public methods that can change or retrieve the value of the instance variable.
When a class or object is well encapsulated, the details of the implementation of the class are hidden from any other code that will use the class. Also, instance variables can be changed and accessed only by the public methods of the class. These public methods control what valid values are for the instance variables and when the methods can be called. If the variables were public and could be modified by any code, there would be no guarantee that the values were valid. For example, if there is an instance variable of a well-encapsulated class that is used as the denominator of a fraction, the methods that set this value could ensure that it was never set to zero. If the class wasn't well-encapsulated--say, the instance variable was public and could be changed by any code--we would no longer be guaranteed that the instance variable wasn't zero.
Any other code that uses this class accesses only what's called the interface of the class. This interface is made up of the public methods of the class and any documentation about the class. When accessing the interface, the focus is on only the details needed to use the class, not on how the class is implemented.
Slide 12

In summary, we explored many different concepts about programming languages in this unit. We learned the purpose of programming languages, the different types of programming languages, how a program is compiled or interpreted, what common programming language constructs [kawn-struhkts] are particularly in Java, and what object oriented programming is. We also gained an understanding of how programs are designed and implemented, what code looks like and what objects are and why they are used. You should now have a good overview of programming languages along with an introduction to programming in Java.

Component 4/Unit 5-5
Health IT Workforce Curriculum
5

Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

