
Component 4/Unit 5-4
Audio Transcript

Slide 1

Welcome to Component 4: Introduction to Information and Computer Science. This is Unit 5: Overview of Programming Languages, Including Basic Programming Concepts. This is the fourth lecture for the unit.
Slide 2

Here are the objectives for Unit 5. After completing this unit, you should be able to:
· Define the purpose of programming languages
· Define the different types of programming languages
· Explain the continuum of programming languages from machine code and assembly languages through scripting languages and high level structured programming languages
· Explain the compiling and interpreting process for computer programs
· Use the following components of programming languages to build a simple program: variables, loops and conditional statements
· And, introduce additional programming concepts such as objects and modularity.
In this lecture we will focus on the fifth objective (e on the slide). This is the second lecture that covers objective (e).
Slide 3

In the programming example of the BMI calculator in the previous lecture, every statement was executed in the order it appeared. But, this isn't always the case. We often need to change the order of execution of a program. For example, we may want a statement to execute conditionally, meaning it only executes if some condition is true. There are two types of conditional statements--if and case or switch statements. Other times we may want to repeat a section of code over and over; this is called looping. There are different types of loops--while, for and do while.
We'll discuss if statements, while loops and for loops in Java [jaw-vuh] in the following slides.
Slide 4

If statements are conditional statements, which means they execute only if a condition is true. An example of an if statement in Java is given on this slide. The first line of the if statement begins with if followed by a condition in parentheses. When this condition evaluates to true--in this case if weight is less than zero, then the body of the if statement executes. The body is the lines of code following the if statement, enclosed by curly brackets. In this example, there is only one statement in the if body--an output statement of "Error!". There could be multiple statements in the if body--as long as they appear between the open and close curly brackets. When the condition is false--in this case, if weight is greater than or equal to zero, the body of the if statement is skipped.
Note: there is no semicolon after the condition of an if statement.
Slide 5

If statements can also have an else clause, which are the statements that execute when the condition is false. So, for our example, we have the same condition for our if statement. When the variable weight is less than zero, the message "Error!" will be printed to the screen. When the condition is false--if weight is greater than or equal to zero, the message "No error" will be printed to the screen.
For both the body of the if statement and the else clause, there can be multiple statements.
Slide 6

We can also build nested if statements, where multiple conditions are checked. When a condition evaluates to true, the body of that if statement executes, but the rest of the statements are skipped. For example, in this code segment, if the variable number has a value less than zero, "Negative" is printed and the rest of the if statements are skipped. The next statement that executes is the one after the if statement; in this case, it's printing "Done" to the screen.
If the variable number is greater than zero, the statement prints "Positive" to the screen, followed by message "Done". Finally if the variable number is equal to zero, "Zero" is printed to the screen, followed by "Done".
Slide 7

As we just saw, if statements use conditions. Now, we'll look a little more closely at what conditions are. Conditions are expressions that are made up of comparisons; if there are multiple comparisons, they are combined using what are called logical operators. The comparison operators that can be used are:
· less than or greater than
· less than or equal to or greater than or equal to
· equal to or not equal to
Note that the equality operator is a double equal sign (a single equal sign is the assignment operator). Not equal to is an exclamation point followed by a single equal sign.
If there are multiple comparisons within a single condition, they are combined using logic operators. There is the logic operator, AND, which is double ampersands in Java. In order for this logical operator to evaluate to true, both comparisons must be true. The logical operator, OR, is represented by two vertical lines in Java (this is found above the backward slash on the keyboard). This operator is true when just one of the comparisons is true, or both. The NOT operator is the exclamation point and it evaluates to true when the comparison is false.
Slide 8

Let's see an example that uses more complex conditional expressions. In the last lecture, we presented a simple program that calculates the BMI for a given weight and height. Now, let's look at how we can determine the weight category for BMI. Here is a table that gives the different weight categories for ranges of BMI. For example, a BMI that's less than 18.5 [eighteen-point-five] is categorized as “Underweight”. A BMI between 18.5 [eighteen-point-five] and 24.9999 [twenty-four-point-nine-nine-nine-nine] is “Normal”; a BMI between 25 and 29.9999 [twenty-four-point-nine-nine-nine-nine] is “Overweight”. Finally, a BMI greater than or equal to thirty is categorized as “Obese”.
Let's write an if statement that will output the category for a BMI; we can assume that it will be included in the previous program.
Slide 9
Here is the if statement. It would appear in the program after the BMI was calculated. The first if statement checks for the underweight category, which is for BMI less than 18.5 [eighteen-point-five]. The next nested if statement checks for normal weight--BMI that is within the range 18.5 [eighteen-point-five] to 25.0 [twenty-five]. Its condition is BMI greater than or equal to 18.5 [eighteen-point-five] AND BMI less than 25.0 [twenty-five]. The next nested if statement checks for overweight--BMI in the range twenty-five to thirty. Its condition is BMI greater than or equal to twenty-five AND BMI less than thirty. The final category is obese, which is greater than or equal to thirty. But we do not need to include that final condition since we are using a final else statement. This statement executes only if all the other conditions are not true, which means that the BMI must be greater or equal to thirty. (We could include the condition if we want, but it's not necessary).
Note that each condition after the first is part of an else statement with an if. This assures that only one category will be printed out--as soon as one of the conditions is true, the category is output and the rest of the if statement is skipped.
Slide 10

Next, we'll look at loops in Java. As you recall, loops are sections of code that are repeated. They will continue to repeat as long as a given condition is true. We'll first look at while loops since they are the simplest loop.
The while loop has a condition, similar to an if statement. Like the if statement, there is no semicolon after the condition. After the condition, the loop body appears; it is enclosed with curly brackets. All the statements within the loop body will be executed during each repetition or iteration of the loop. When the end of the loop body is reached, the program returns back to re-evaluate the condition of the while loop. If it is still true, then the loop repeats again. If it's not, then the loop is skipped and the first statement after the loop executes.
In this example, we have a variable named count which is assigned the value of five. The variable count is used in the condition of the while loop. This condition is count greater than or equal to zero. The first time through the loop the condition is true so the loop executes. The value of count is printed and count's value is reduced by one. So, the second time through the loop, count is now four, which is still greater than or equal to zero, so the loop executes again. This continues until count has been reduced to negative one, at which time the condition is no longer true and the loop is skipped.
Note that the value of count must change within the loop or the loop will execute forever--an infinite loop. This is a common coding error made by (usually) inexperienced programmers.
Slide 11

Here is the output from the while loop on the previous slide. During each iteration of the loop, the value of count is printed and the value is decremented [dek-ruh-men-ted] by one. Eventually the count is less than zero, so the loop ends.
Slide 12

A for loop is another type of loop. The for loop starts with the word "for" and is followed by a three-part statement within parentheses. The first part sets the initial value for what's called the loop control variable. In this example, the loop control variable is i and its value is set to zero. The second part is the condition for the loop; it is usually a comparison using the loop control variable. As long as this condition is true the loop will continue to execute. The final part is the update--it changes the value of the loop control variable. Presumably, this update will eventually change the loop control variable such that the condition becomes false.
For loops are useful for when the number of iterations of the loop is known.
In this example, we see that our loop control variable i is initialized to zero. The condition is i less than five and the update is to increment i by one. (i++ [eye-plus-plus] is shorthand notation for incrementing i by one). The loop body is a single statement that outputs the value of i to the screen.
Slide 13

Here is the output from the previous example. i started at the value zero and the loop continued while i was less than four, incrementing by one each time. During each iteration, the value of i was output, so as you see here, the values zero through four were output by the loop.
Slide 14

Let's write another program. We will modify our BMI calculator program by adding the if statement for outputting the BMI category. And we'll allow the program to calculate more than one BMI value.
Slide 15

Let's look at the design. Like before, we'll still need to read in the weight and height from the user. We'll calculate the BMI, then output it. Next, we'll determine the category for the BMI and output it. Finally, we'll ask the user if they want to calculate another BMI. If they do, we'll go back to step one and repeat. If not, the program will end.
Slide 16
Here is the first part of the new program. The entire program would not fit on one slide, so we will show it on two slides. So we can see what was changed, the added code is highlighted--the yellow highlights here show the changes we needed to implement the the loop. In this case, we added another variable called anotherBMI; it is an integer variable that we initialize to one. We use a while loop for repeating the BMI input and output loop. The condition of the while loop is anotherBMI equal to one. The first time through, we've already initialized anotherBMI to one, so we know that the while loop will execute. The rest of the code shown on the slide is the same as the code for the original program--getting the weight and height from the user and calculating and outputting the BMI.
The following slide provides the remainder of the code.
Slide 17
Here is the rest of the code. We still include the heading of the while loop which was shown on the previous slide, but we skip showing the height and weight input and BMI calculation.
The next part is the outputting of the BMI category. This code is highlighted in green. It is the same if statement that we showed previously.
The final part of the loop is also new--this is where we ask the user if he or she wants to calculate another BMI. If he or she does, the user will enter the number one; otherwise the user will enter a zero (actually the user could enter anything other than one to end the loop). The next value for anotherBMI is read in and the condition for the while loop is evaluated again. If anotherBMI is one, then the loop will execute again. If not, the loop will be skipped and the statement following the loop will be executed. In this case it's a statement that prints "Good Bye!" to the screen.
Slide 18
Here is sample output from the program. As before, the input entered by the user is given in green. As you can see, the user is welcomed to the BMI calculator and asked to enter weight in kg and height in m. The BMI is calculated and output (in this case it's 42.16 [forty-two-point-sixteen]…). The category for this BMI is Obese, which is outputted. Then the user is asked if he or she wants to calculate another. The user enters the number one (which means yes for this program) and the loop repeats again. The user is once again asked to enter a weight and height. The BMI is calculated and output (now it's 24.444…), which has a category of normal weight. Finally, the user is asked if he or she wants to calculate another; this time the user enters a zero, which means no. The loop is done and the next statement is executed, which outputs "Good Bye!" to the screen.
Slide 19

The next construct that programming languages have are data structures. Data structures allow programs to store multiple pieces of data together in one entity. Arrays are a very simple data structure that are supported by most programming languages. Here is an example of an array in Java. It is for storing ten grades, where each grade is a double (meaning it can have a decimal value). The syntax for declaring an array is shown first--the data type is given; the square brackets that follow it which indicates that this is an array declaration. Next, the name of the array is given. Because arrays are objects in Java, a new array object must be created. This is accomplished by new double square bracket ten square bracket semicolon. To access a particular element in the array, we use a subscript, which is square brackets around an index value. In this case, we're assigning the element of grade with an index of one, the value 95.0.
There are other more complex data structures available. Most programming languages have libraries which provide constructs to implement data structures such as linked lists, trees, and hash tables, just to name a few.
Slide 20

The final construct of most programming languages is a way to separate code into modules. Depending on the language, modules may be called procedures, functions or methods. The purpose of these modules is to perform some task. We can define this task once in a procedure and it can be reused. Also, separately programs into modules provides a more organized structure to the code making it easier to maintain.
Here is an example of a method in Java. This method prints the area of a circle; the radius of the circle is provided as an argument to this method. The area is calculated and then output within the method. This method can be called multiple times with different values for the radius.
Note: objects can also be considered modules. We will discuss objects further in the next lecture.

Component 4/Unit 5-4
Health IT Workforce Curriculum
6

Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

