
Component 4/Unit 5-2
Audio Transcript
Slide 1

Welcome to Component 4: Introduction to Information and Computer Science. This is Unit 5: Overview of Programming Languages, Including Basic Programming Concepts. This is the second lecture for this unit.
Slide 2

Here are the objectives for Unit 5. After completing this unit, you should be able to:
· Define the purpose of programming languages
· Define the different types of programming languages
· Explain the continuum of programming languages from machine code and assembly languages through scripting languages and high level structured programming languages
· Explain the compiling and interpreting process for computer programs
· Use the following components of programming languages to build a simple program: variables, loops and conditional statements
· And, introduce additional programming concepts such as objects and modularity.
In this lecture we will focus on the fourth objective (d on the slide), which is to explain the compiling and interpreting process for computer programs.
Slide 3

We know that computers can execute only machine code. Unless we've written our programs using ones and zeros we're going to have to do something to convert our programs to machine code.
Assemblers are the programs that translate assembly code into machine code. This is relatively straightforward since we're making the translation between a computer-specific assembly language to its corresponding machine code. But what about high level languages that aren't specific to a particular machine? How are they converted to machine code?
Slide 4

The answer is that higher level languages are compiled. The compiler is a software application that takes as input a program written in a particular programming language (in this case C) and outputs machine code that can run on a computer. If there are any syntax errors in the program file, the compiler will flag them and halt compilation. The programmer will need to fix these errors before the compilation will complete. For languages that are compiled, the entire program is compiled at once to produce an executable program. Presumably, this is done once the program is ready for release; then the executable version can be distributed for running on computers. This executable program can be run over and over again without needing to be recompiled (until the next update, of course). The point is that the compilation and execution steps are separate.
Slide 5

Compilers are unique to a given computer and its operating system, so there is a different C compiler for a PC running Windows 7 than there is for an iMac. This means that the same C program must be compiled twice--once for the Windows PC and once for the Mac.
Examples of programming languages that must be compiled are C, C++ [c plus plus] and FORTRAN, among many others.
Slide 6

There is a slight variation on compiling called interpreting. In this case, programs written in an interpreted language are processed one line or one statement at a time. This line is compiled to machine code and run on the computer. If the compiler finds an error, the program ends. If not, the statement can execute and the next line is compiled and so on.
Note: because the interpretation step and the execution steps happen together, these programs tend to run more slowly than programs that are compiled. The trade off is that interpreted languages can be faster to develop since the entire application doesn't need to be compiled before running it. Often during the development stage, programs are changed frequently which can result in a lot of compilation time, particularly for a large application.
Slide 7

The interpreter for the language is unique to each computer, but once this interpreter program is installed, any program can run on it. In other words, you can port (move or copy over) a program written in an interpreted language to any computer, assuming the computer has the interpreter installed. Many scripting languages are interpreted, making programs written in them portable.
Some examples of interpreted languages are BASIC, Perl and an early version of MUMPS.
Slide 8

There is a hybrid approach that combines compilation and interpretation. In this case, programs are compiled to an intermediate type of code which can run on a virtual machine. This virtual machine then interprets the code. As long as a computer has the virtual machine, it can run any code that's compiled to this intermediate state.
This hybrid approach is valuable since it combines the speed of a compiled language with the portability of an interpreted language. The virtual machine and the intermediate code are both optimized so that they run faster than a simple interpreted language would yet there is more portability than with a compiled language.
Some examples are Java and Python. We'll show in detail how Java is compiled and run on the next slide.
Slide 9

In the case of Java, programs are compiled to what's called byte code; it's also called a class file. This byte code is portable to any computer that has a Java Virtual Machine (JVM) installed on it. Most computers today have Java installed (it's also called Java SE [S-E]); you may have noticed that you installed it when you visited a website that used Java and requested that you download it or update your current version. Web browsers’ use of Java is what has made it so popular--any Java byte code contained within an application can run on any computer with a JVM [J-V-M] (which are on most computers today).

Component 4/Unit 5-2
Health IT Workforce Curriculum
3

Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

