Component 4/Unit 5-4

Audio Transcript

The iteration logic construct, sometimes called repetition and commonly referred to as looping or Do loops, is a way of executing code repetitively. Oftentimes, it’s the case that we want to execute a given number statements for every transaction that comes through the program and the only way to do that without a loop would be to copy paste the code. Well, first, you'd have to count how many transactions you’re going to process, which means opening the file and actually counting them and there may be a million of them and then you'd have to go in and copy paste the statements that many times in your code, compile it and run it against the file. Obviously, this is not a very viable choice, and the alternative is much better, which is to use an iterative process where you wrap the code that you want to process a transaction with in statements that cause the code to be executed over and over again, and then – but you have to give it a test or a conditional test that says this is when we stop. So a loop can’t just be executed and then go on forever; it has to have a way of terminating. And if you write that termination test in such a way that you leave the door open and data can execute forever in the loop that’s called an endless loop, it’s a logic error. Programmers make this error fairly commonly. It’s a fairly common error. You try to design this error out of the solution in the design phase but still, even fairly experienced programmers will make this error sometimes.

There are two different types of loops. There is a pretest and a posttest loop. The difference between the two is the minimum number of times that the loop will be executed. The pretest loop will be executed a minimum number of times at zero. The posttest loop will be executed a minimum number of times of one. The reason that pretest loops will be executed a minimum number of times at zero is that the conditional test is done before the loop is entered. So before the code is executed even the first time, it tests to see if the loop should end, and if the condition is already true to stop the loop; it never executes the code. The posttest loop on the other hand executes the statements in the loop and then tests to see if it does it again so that’s why its minimum execution, the number of times it's executed is one.

Okay, so, it might be advantageous to look at some physical code here and we need a problem to solve to show that. So the problem statement is to design and write a program that processes a file of debit and credit transactions. This could be for any business application, even in a hospital where patient has debits and credits to their account, and produces a report showing the transaction type, either DB or CR for credit, the transaction amount, a running count of debits, a running debit total, a running count of credits and a running credit total. So basically, for debits we have a count of how many debits there were and also a total of the debits and amount and the same for credits. As we’ve said before, there's no standard syntax for pseudocode but in this solution, we’re using a particular standard so that we can see what the problem might look on a pseudocode. And it’s not critical that you understand everything that’s written here in the pseudocode but we will go through it step by step so that you understand what we’re trying to do and it’s trying to solve that problem that we just stated.

The first thing to do would be to open the file that we want to process somewhere out on the system as the file of transactions and then we’re going to put out a heading, in this case to the paper or to the screen, somewhere that titles the report that we’re generating. And then we have a Do pretest until end-of-file loop that starts. Remember that a pretest loop tests before it goes in so if the file is empty, it would already be at end-of-file. That’s what EOF stands for. And if it were, we wouldn’t go into this code, we would jump down to the End pretest statement near the bottom, but assuming that there are transactions we would go into the loop.

The first thing it does is to input the Tran type and Tran amount from the first transaction in the file and then it tests the Tran type to see if it’s a debit. And then if you notice, there’s an else-if to this if-statement which tests to see if it’s a credit. So if it’s a debit then we would set the debit amount equal to the Tran amount that we just read in. We would set a debit total equal to what it was before plus the debit amount that we just read in. So that statement, second statement, in to the debit test of debit where the Tran type is debit would be accumulating the total debits.

And right after that, the other thing we have to do was count the number of debits. So this is the first debit that's come in, we would set the debit counter equal to itself plus one. So another way to read this - it's a little unusual for most people just coming in to programming - is to say the new count of debits is equal to the old account of debits plus one. So it’s a way of accumulating or counting the number of debits that come in. And the same kind of logic is being applied to accumulating the debit total.

If it was a credit, the same thing would be done on the credit side, so credit amount would be set to Tran amount. The total credits are accumulated in the same way, and the total count is counted in the same way and then we have an end-if. So when we leave this alternation statement with one transaction, we will have entered it into either the debit or credit side and we'll be ready to go with the next one.

But before that, the report has to be generated about this particular transaction so right after the alternation statement, we output the Tran type, the Tran amount, the count of the debits, the debit total, the count of the credits and the credit total. If they didn’t want running totals to be generated in this report, we would have left this statement out of here. We would have put it after the next statement, which is the end of the pretest but the problem statement said that they wanted to see the debit total as we went. They wanted to see the count increase as we went through each transaction.

We hit the End pretest, and what the End pretest does basically is send us right back to the Do pretest near the top. We don’t go back all the way to the top of the program; we just go back to the Do pretest until end-of-file statement. And in doing so, we complete the one iteration. And when we go in the second time, assuming there's another transaction there because every time we hit the Do pretest until end-of-file, it’s going test to see if we’re at end-of-file. Assuming that we’re not yet, we would go in again and then put another Tran type and another Tran amount from the next transaction and then we would do the same test for debit and credit, do the same things; we would output the running totals, we hit the End pretest and come back and continue this loop until we get to end-of-file. And that could be after a hundred, it could be after a thousand, it could be after a million transactions have been processed.

Once we hit the end-of-file, the loop is finished, so the Do pretest would have encountered the fact that it’s end-of-file and it would send us to the statement after the End pretest statement and that’s a Close at the very bottom of the pseudocode. It’s a Close file statement, which you have to do. If you open a file out on the system for processing the data within it, you need to close that file before you finish the program, and the last statement is End module. In this case, End module serves to end the module run but because the application is one module, it also terminates the run so the program is finished.

Now, we’re going to take the pseudocode solution, the design, the logical solution that we did for the debit-credit problem and see what that looks like in a physical programming language. In particular, we’re using VBA here as an example. VBA is a language which is a Microsoft product that is attached to Word, Excel and Access and it's used primarily in one of those three applications when something needs to be generated on the Word document or in the Excel package or something needs to be done with the Access database that involves programming. So, this is going to be similar to the solution; hopefully, it will be. It's supposed to follow the same logic of the logic solution; it shouldn’t deviate from that. That was the logic plan that we had in the pseudocode and all we’re doing here is carrying it out in different syntax of a programming language. So although it doesn’t look at first sight to be too similar to what we just looked at, this is logically equivalent.

So on the left-hand side here - and I numbered the statements so I can refer to them easily in the audio here - the statements on the left, 1 through 9 or 1 through 8, are identifying the variables that are going to be used in the code. And the same variables that we use in the pseudocode, we are using here in the VBA solution so Tran type, Tran amount, for instance 1 and 2, remember those from the pseudocode. And we’re also identifying – we’re telling the machine that we’re going need these variables but we’re also saying what data type they are and so Tran type is string for VBA which is an alphanumeric data type, Tran amount is currency which is a numeric data type. There are in VBA a number of different numeric data types down at lines 7 and 8. The counts are instead of currency they’re integer. That’s another numeric data type but there’s only one alphanumeric data type in VBA that we will use in that string.

Line 9 is not important. We’ll skip over to 10 through 29 which is the heart of the programming that was being done on the basis of that logic solution. And Sum DB and CR is a module name and if you recall from the last slide that is the name of the module that we used in line 10 that we used in the pseudocode. The other parts of it, the Private Sub, the little cmd - lowercase - in front of it and the underscore click, parenthesis after Sum DB and CR, are just physical syntax that you have to put in for VBA. Basically, the Sum DB and CR is the module name that is consistent with what we said the module name would be in pseudocode. So, again, we’re not requiring you to know the syntax here so much as the fact. This is just an example of how a programmer would take a logic solution and then apply that with a physical language.

So, the Open statement, remember in pseudocode we said open the file, here it says Open and then – but the particular location and filename is presented here, and also in VBA, you identify it with a number. So, again, the syntax is quite different but basically this is just opening the file.

The next statement, remember we said we were going to output a heading and that's what this is doing. It's simply saying to put this on to the report and the labels of the columns that of the data coming out are stipulated. So, again, this is just outputting a heading.

The next statement, remember in the pseudocode was the Do pretest till end-of-file. Here, in statement 14, we have Do until end-of-file so that does look quite a bit like what the pseudocode was, and this is a pretest loop, start of a pretest loop. In line 15, remember inside the loop it was to input Tran type and Tran amount and that’s what this one is doing from file number 1, which we’ve identified as the file that we opened in the statement in 11. So this is just the same thing, as opening or – sorry, inputting the Tran type and Tran amount. In line 17, we’re testing to see if the Tran type is DB. In line 21, we’re testing to see if it’s CR. And in line 25, we’re ending the alternation statement. This looks very much like the alternation statement in pseudocode. Sometimes, there’s more similarity between a given language and pseudocode depending on what your standard for pseudocode is than other types of statements.

So I think you can follow this pretty well. From the pseudocode, we were setting a debit amount to Tran amount. We’re accumulating the debit total. In line 19 and in line 20, we’re counting the number of debits. The same thing for the credit side: in line 22, we’re establishing the credit amount from the Tran amount. In line 23, we're accumulating the credit totals. And in line 24, counting the number of credits. In line 26, which is the longest line that’s in this program, we’re outputting the running totals. So it’s outputting to the report the various values - the Tran amount, the Tran count of debits, the debit total, the count of the credits and the credit total - to the output side. In line 27, on the pseudocode we said end loop or End pretest. Here, we’re saying Loop as a syntax statement for ending the pretest loop. In line 28, if you remember in the pseudocode after a loop was done, we close the file, and here we say Close Number One, which is the identifier for the file that we opened in statement number 11. And then in line 29, End Sub is the same as End module in our pseudocode. It's also because there’s only one module here serving to end the whole program, at least end the statements of the program.

The concurrency logic construct is where we’re trying to carry out more than one process in what appears to be a simultaneous fashion. If you’re working with a machine that has one processor, this is really not the case that you’re actually doing them simultaneously but it appears to the user quite often that you are. Because the machine is working so fast and it can finish a process, start another and finish it then come back with a result, it may appear that the process is being done simultaneously. But if you have a multiprocessing environment and what’s called distributed processing over several machines then you do have multiple processors and these processors can actually be carried out simultaneously.

Some examples of concurrency, single and multiple processing, are listed here: standing in line buying tickets to a show and then asking a person to hold your place while you stand in another to buy a hotdog, you’re in effect standing in both lines but you’re only physically actually in one of those at a time, but it appears as though you’re in both lines. Driving and talking on the phone at the same time; you’re driving or you're talking on the phone, perhaps this is why this has been outlawed in a number of cities but in any case you’re only doing one of those things, one of those activities at a time. You’re one processor. You’re one person. Multiple processor concurrency would be a baseball team where balls hit to the outfield and the second baseman at the same time that the outfield is getting underneath the ball to catch it is moving towards second because the runner on first is going to try to advance so there are multiple players doing multiple things at the same time. And airplane pilot and copilot flying a plane, the pilot is doing things while the copilot is also doing things so there’s another situation where multiple things are occurring simultaneously in a multiprocessor environment.

The recursive logic construct, again this is one of the two that two Italian mathematicians proved - at least they thought they proved - that we’re not necessary that you could do all, solve all applications using the first three of the sequence alternation and iteration but this comes in handy sometimes. There’s a common joke about defining recursion. As looking up the definition of recursion, you would see a reference to look up the definition of recursion. This is because a recursive programming module invokes itself. So within the processing of the module, of the process that's recursive it says do the recursive process that we’re in.

To get a little better look at the recursion logic construct in programming or process, it's said to be recursive if the following two things are true: there's a base statement and then a set of statements after that that reduces all cases to the base statement. As an example of a base statement, we process the first prescription for a patient and remember how that is done and then to reduce the rest of the processing of all the other prescriptions, we process the first prescription of what is left of the 1,000 prescriptions that we’re doing; that would be the 999th one. This means that the base statement is executed again, processes called upon itself, and then we would continue doing that to execute the base statement for the other 998 prescriptions.

Because recursion is somewhat of a difficult thing to get a handle on in terms of what it really is, there are a few things that might help that are analogous to recursion in the real world. The first is a rather famous saying, "If at first you don’t succeed, try and try again," and this at first glance would seem to be a loop and it is a loop-type repetitive process but if you notice there’s no definition as to when we stop. It's assumed that when we succeed, we’ll stop.

The second one opposite mirrors generate a recursive image so if you’re walking between two walls and they both are floor to ceiling mirrors and you turned and looked in one mirror, you’ll see yourself looking in the mirror in the image behind you on ad infinitum, indefinitely, and there again that’s the reason that it's a recursive image. It’s repeating the image but where’s the end of that? It seems like you continue to see the image as far as you can see.

And then a spellchecker that checks the first word and then requires the rest of the document to be submitted for spellchecking so if there’s a thousand words - this is sort of like the prescription example we saw before - if there’s a thousand words in the document, it will check the first word for correct spelling and then that's the base statement, and then the other statements in the code will require to be submitted and then check the first word and that would be the second word in the document. And then it would require the document to be submitted again and check the first word which now would be the third word in the document, et cetera, until the document is finished checking.
[END OF AUDIO]
Component 4/Unit 5-4
Health IT Workforce Curriculum
1

Version 1.0/Fall 2010


