
Component 4/Unit 5-3

Audio Transcript

Data type is an important concept in programming. You want to and most programs store data in memory into an address. In order to do that, you need to tell the machine what kind of data it is so it knows how to store it.

There are three basic data types. One is alphanumeric, one is alphabetic and one is numeric. Alphanumeric has a character set of A through Z, also the digits 0 through 9 and some special characters. It is the most inclusive data type. You can put things in it like customer address, name, phone number, customer ID, age, et cetera. Anything that you’re not going to do arithmetic with can be an alphanumeric character set. Alphabetic is just A through Z. Alphabetic is not usually used in programming languages although a few do have alphabetic as a data type. Instead, most languages use alpha-numeric because if you’ve noticed A through Z is a subset of the alphanumeric data type. Numeric is used. It’s a character set 0 through 9 but it’s a different character set if you want to think about it. It’s a different character set than the 0 through 9 for alphanumeric. Alphanumeric 0 through 9, you cannot do arithmetic on. Numeric 0 through 9, you can. So, if you’re going to do any mathematics, if you’re going to do any calculations, if you’re going to compare numerically one value versus another, if you’re going to do numeric punctuation, you want to have a numeric data type. If you’re not going to do any of those things, then the field should probably be alphanumeric.

Some examples of numeric are account balance, age, count of transactions, customer rate, et cetera. If you noticed, age is in both the alphanumeric and numeric examples, that’s because you might be testing the age versus the age of 21 to see if the person is greater than 21. If so, then the age variable should be a data type of numeric. If on the other hand you’re just reading in the age, and maybe putting it on a report, you’re not doing any arithmetic with it, then it’s probably best to be alphanumeric.

Constants are values that as we all know, like pi, are values that don’t change. But there are some values that change somewhat – just not very often – and in programming sometimes those values can also be considered a constant. The one thing about the minimum requirement for a constant is that it must not change during at least one execution of the program. Generally, the bar is set higher than that for something to be called the constant, but that is a minimum requirement. If it changes during the execution of a program then it should be a variable.

Secondarily, something whose value has been identified as not volatile and that gets into setting that bar higher. Some examples of course would be number of days in the week, number of months, periods in the business calendar, the state’s legal driving age or pi as we’ve stated before. Now, the number of months, periods in the business calendar can change. You could be having 12 – be on a 12-month calendar or you could change to 13 periods. So if the company is going to change from one to the other and you have made – say it’s changing from the number of months, 12 and you have made 12 a constant in a lot of programs in your shop, then you’d have to go back and change them all to 13. Find all the occurrences and change them to 13 and then recompile all those programs.

So you can see that if something that is considered to be a constant ends up being something that changes, it can cause a lot of work. The state’s legal driving age is another situation where if you look at it historically and the state’s legal driving age has not changed for 40 or 50 years, you might then think of it as being a constant. On the other hand, perhaps the legislatures considering changing a legal driver’s age and you know that. It’s possible to get around these issues because you can store those state’s legal driving age in a database and read it into all the programs that use it and then if it changes, all you have to do is change it in the database and it’s immediately changed for all the programs out there. But as soon as you do that, you put it the database, and read it into all those programs, it’s no longer a constant, it’s a variable. That may be the best solution for some of these fields that you’re not positive about what their level of volatility is.

Categories of source code, this is a very helpful slide especially when you’re learning a new language because it is comforting to know in a way that there are only seven categories of source code. So when you look at a statement in a new language, and you’re trying to relate to it, quite often it’s useful to be able to come back and say which type, which category this statement belongs. Since there are only seven of them and you can place it pretty easily, you then know the purpose of the statement and makes it easier to learn a new language.

The first category of source code is definitions of variables, constants and files. Variables are the variable names that stand for a place in memory where the value of that variable is going to be stored, and then you can retrieve that value back from memory just by mentioning the variable name. When you define or declare a variable to the machine, you’re saying I’m going to use this variable in my program and I want you to set aside a memory location for it and it will do so and then connect the variable name with that memory location. Whenever you mention a variable name again, it goes and gets the value stored there, and brings it back.

The second category is input and/or output operations. All programs have to do inputting and/or output so this is an important category for all languages to be able to do.
The third category is assignment statements. If you need to change the value of the variable during the execution of your program, you would use an assignment statement. The assignment statement is typically you put a variable name on the left of an equal sign and on the right, you put an expression – sometimes an arithmetic expression which is the next category – that when it’s evaluated and you get a result, that value or result would be stored in the variable.

The fifth category down is exclusive options. When you have more than one alternative based on sum result, you have exclusive options. For instance, if you’re going outside and you want to know what kind of outerwear to put on and you test to see if the temperature is less than 32, and if it is you wear your heavy coat, but if it’s not less than 32, it’s less than 60, you wear your light jacket. And if it’s greater and equal to 60 degrees, you go out with just your shirt on. So those are exclusive options. You would be wearing, going outside with one of those situations but not more than one.

Repetitive execution is where you’re executing code over and over again iteratively and this is very useful in programming because otherwise you would have to write that set of code however so many times you want to execute it in sequence. If you’re processing a file that had a million records in it and each transaction in that file, each one of those transaction required five statements, you’d have to copy-paste those five statements one million times. Obviously, that’s not particularly a nice thing to have to do – not only that but you almost never know how many transactions are actually in a file before you’re processing it. It would take too long to count them all. So typically what’s done instead is to have a repetitive execution of those five statements and you just tell the machine, do this, do these five statements for each of the transactions and until you reach the end of the file. And it will do that. So you reduced 5 million lines of code down to 5, or 6, or 7.

Procedures declaring an invoking is the last category and being able to break code up into sub-task is an important thing to do in programming. Once it’s broken up into sub task or put into procedures – separate procedures – you have to execute or invoke those procedures to get those sub-tasks accomplished and you do that with this type of statement.

I thought it might be useful at this point to look at some programming language, very simple problem just to get a look at it, not that you should necessarily be worried about understanding the syntax of the language, but we will go through it a little bit so that you can see each of these types of things, these categories of source codes that we have been talking about. The first at the top, I’ve numbered these lines so it’s easier to refer to. They’re actually are in the program, so one through three are defining variables to the machine. It’s saying that “hours worked” for example in the first one is a variable that I’m going to use, that’s a variable name and you set aside a place in memory for it. It’s also saying that it’s a single data type in this programming language called VBA – that is a decimal field. And “pay rate,” and “gross pay” are defined or set aside as currency which is monetary field. So they are being stored and defined to the machine here at both what their variable names are and what their data types are.

Line four is the module name statement. In this case it’s named “gross pay” module and in VBA you start that off with private sub and so forth. But again, the syntax is not particularly important here. Just that this is the delineation of a module. We’re saying we’re going to have a module here at this point. The next three, four statements from 5 to 8 are the statements that are in the module. They’re actually the code that’s going to be executed when this module is invoked.

“Pay rate,” statement number five is an assignment statement here. It’s saying “pay rate” is equal to, in this particular case it is bringing in something from a GUI interface. The user is actually entering the “pay rate.” Again, not that we have to know the syntax – don’t worry about that. But just know that statements five and six are bringing data in from a window, a user-entered data and it’s being stored in these variable’s “pay rate” and “hours worked” in memory.

Then statement seven is an assignment statement. We talked about it before. “Gross pay” in this case is being set equal to that “pay rate” that we just input and the “hours worked,” multiplied together. So we get a product that is a “gross pay.” This particular statement is very easy to understand, I think, in comparison to the others. The syntax is not complicated at all.
Statement eight is an output statement and it’s syntax is a little bit more unusual, and again, don’t be too worried about that but all this is doing is taking that “gross pay” that we calculated in the statement seven, and we’re outputting it to the screen back to the user so the user can see the result.

Then, statement nine ends the module. Notice that all the statements inside the module are indented. This is important to show that the statements are dependent for their execution on the module being invoked. We indent the programming always to show dependency of execution.

Okay. So, now we need to learn a little bit about the logic constructs that are used in programming languages. For people who have never had any experience of programming languages before, when I ask them how many logic constructs they think that programmers would need to write any kind of application in science, engineering, business, healthcare and et cetera, all the places that computers are used these days, they often say guess, 20, 30, 40, 50 or up. It turns out there are only five logic constructs that are necessary to carry out any of those applications and in particular, only three of those in most cases are necessary.
There’s some controversy about the last two Italian mathematicians proved, as the footnote says here. They thought they proved that those two logic constructs were not necessary. They might be useful at times, but not necessary to solve any of those problems. But there’s been some controversies about that later in terms of whether the proof was accurate or not. But whether the proof is accurate or not, it is the case that in most applications, computer applications, all you need is sequence, alternation, iteration, which are the first three here. Concurrency and recursion for certain given problems are nice to have but are not absolutely necessary. So we’re going to look at all of these but we’re going to look in more detail at the first three: sequence, alternation and iteration.

Sequence is perhaps the easiest of the logic constructs to understand. We’ve all had to put something together and follow step-by-step instructions. It’s critical to get the sequence correct in programming because otherwise, we get the incorrect answer. In designing the program, that’s where the sequence is determined and it should be done carefully to avoid sequence errors.

The alternation logic constructs sometimes called “selection” common referred to as “ifs and else” provides a way of processing exclusive options. It breaks up sequence so that we do different things based on some condition. For instance, if you were following instructions on putting something together nd you were doing that in a sequential manner, the instructions may have been written for more than one model of what the company produced. So at some point in the instructions it might say something like, if you bought model A, do this; else, if you bought model B, do this other thing. That’s pretty much what alternation is. It provides a way of doing, as I said, exclusive of processes. It comes in many forms. We’re going to look at two of them in a little bit more detail than the others. The simple forms of one-tailed and two-tailed are what we’ll look at primarily. There’s also case nested and compound.

Simple alternation comes in two flavors: one-tailed and two-tailed. We’re going to be using pseudocode here to show what they look like. If you think if you’re coming to a stoplight in a one-tailed situation, we might write, if light is green, go. Then there’s also a termination to the alternation statement. In pseudocode it could be written in a number of different ways because pseudocode has no standard. Our standard here will be that we’ll end the alternation statement with an “end if.” So the if statement starts with if, and then some condition, in this case the condition is light as green, and then there’s some things that you do based on that being true; in this case, we go. Then there’s the termination of the alternation statement.

Two-tailed, we just add another option. So if a light is green, go; else, if light is red, stop, end if. And typically, the “if,” “else, if,” “end if” are all lined up as they are here, and things that are processed within the alternation statement are typically indented to show that they’re dependent for their execution on the conditional test that’s provided.

The previous two-tailed alternation’s example had said if the light is green, go; else, if the light is red, stop, end if. In this case, we’re going to use a little variation on that, we’re going to change the “else, if” and the conditional test if the light is red and just say “else, stop.” In this form of the two-tailed, if light is green, go; else, stop, end if. So if the light is yellow, if the light is red, if the light is anything, maybe the light is off and it’s not working – whatever the situation – if it’s not green, then we’re going to stop.

There are other forms of alternation in addition to the simple. Even with the one-tailed and two-tailed, at this point, I think you can see that depending on what the application is, you would use the appropriate alternation format to solve to get the required result. There are other forms that will handle other possibilities, case is one of those. Case is when you have more than two exclusive options so we might write something like, if the light is green, go; else, if the light is red, stop; else, if the light is yellow, proceed with caution; else, if officer waves you through the intersection, go. And then eventually “end if” at the bottom. So case will handle more than two exclusive options. And then nested or dependent, is if you have one alternation statement that is inside of another. So we might write, if the light is yellow, and then inside of that “if” statement when it’s true, we test immediately to see if there’s time to get through the intersection. So, if light is yellow, if time to get through the intersection, go; else, stop and we’re done.

The compound alternation format is two test in the “if” statement instead of one. So we might say, “If” the light is yellow, “and” we think we can get through the intersection in time, go. So the keyword “and” there is connecting two different tests. One test is if the light is yellow, the other test is that we think we can get through the intersection.

[END OF AUDIO]

Component 4/Unit 5-3
Health IT Workforce Curriculum
1

Version 1.0/Fall 2010

