Component 4/Unit 5-2

Audio Transcript

Okay. Let’s take a look at a program language solution for the “gross pay” problem, one might be called the physical solution. Since the design was the logical solution, this would be the physical solution then. And we’re looking at VBA code here. VBA is the language which is relatively syntax, is relatively easy and it’s also readily available because we have Word, Excel, or Access, or even PowerPoint, you have access to this language. So the first thing we notice is that there are few statements that we haven’t seen before in a logic solution. They start with “dim,” the word dim, there are three of them and I’ve numbered the statements here so, I can refer to them, one, two, and three. The “dim” stands for dimension and we might think of them as declaring the variables to the machine or saying I’m going to use these variables. I want you to set aside memory where I could store the data and then I want to be able to refer to that data by these names. The names are “hours worked,” “pay rate,” and “gross pay.” And we’ve also declared what’s called the “data type” in these statements where we’re not only telling machines that we want to refer to these by these names, we’re also saying that they are either numeric or they are a certain numeric type. For instance, “pay rate” is a currency data type in VBA and so is “gross pay,” whereas “hours worked” is not money so it’s referred to as single. Single is a decimal data type so I can put a decimal data value in there such as 4.5 hours and it would be okay.

So these statements were not in the logic solution because they are physical by nature. They are talking about places in the computer where the values, the data are going to be stored while we work with it and that is only in the physical solution or the program language solution.

The next statement, number four, is applicable to our logic solution. It is the module name statement. In VBA it starts with private sub but it really doesn’t matter here. The main thing is if you notice, “total pay” is in there. That’s our module name that we used in the logic solution. And by the way, the variables that I have dimmed up above in the statements one, two, three are the same variable names that we had in our logic solution.

So within the module we have four statements. The first one is “pay rate is equal to” and then this value on the right. The second one is “hours worked is equal to” and then an expression on the right that’s similar. What is happening here is we’re bringing in the data for “pay rate” and “hours worked”. These two statements in the lines five and six are like the input statement that we had in our logic solution. We’re actually inputting the values into our program in the memory and we’re placing them in these variable names, “pay rate” and “hours worked” so we can refer to them again.

The next statement then is like the second statement in our code in our logic solution. That’s the assignment statement where we take “pay rate” times “hours worked” and equals gross pay. That, in fact, looks very similar if not identical to the statements that we had in our various logic solutions.

The last statement, the syntax is different but really what this is doing is it’s outputting the value “gross pay.” It’s telling the user what the answer is. And finally, we have ends up which terminates the module and that’s analogous to the end module statement that we had in some of the logic solutions or the end of the brace in Warnier for instance.

Now, it isn’t really necessary that you know the syntax here of VBA. It’s just that we’re trying to make a connection here between this physical solution and the logic solutions that we had before - and I keep saying physical solution, this is the program language solution and we’re making the connection to the logic solutions that came before. It’s important that when we write, go to the trouble of designing something and we design it well, that we carry it out in the same logic in the physical solution. So, we follow the logic solution as a map when we get to the program language.

Program languages need to store and retrieve data from memory. Variable names are used to retrieve the data from memory. Variable names are like tags for memory locations. Arrays store repetitive data in memory. For instance, the daily blood pressure readings for a patient in a hospital over a two-week period would involve 14 readings of a repetitive nature. Constants are values that are not going to change frequently. In particular, they cannot change during the execution of the program. Code that is written in a language other than machine code is called “source code.” This is because it serves as a source for a machine code after it is compiled. It is helpful in the understanding of source code to know that there a limited number of categories of source code statements.

Source code is commonly broken up into modules. To execute these modules, code must branch from one module to another. There are two ways to branch. Unconditional branching involves simply transferring control to another location and code, while conditional branching requires that when the branch to module reaches its end, it must come back to the location from where the branch originated. This is analogous to a supervisor telling someone to accomplish a task and after the task is accomplished, asking them to report back to the supervisor. It turns out that unconditional branching leads to spaghetti code and conditional branching is used for structured code. Thus, conditional branching is preferred.

When a program branches from one module to another, variables that are needed can be passed from that module to the other module. Cohesive code is important to object-oriented languages. Methods of objects are best when they have strong cohesion and lose coupling. Strong cohesive code is code that is easily used by more than one application. Therefore, it cannot have statements that tie up to any one application.

Coupling has to do with the fact that modules must relate to one another. A module cannot be functional within an application if it doesn’t have data passed to it and perhaps out of it. As an example, if a module adds two values and gets a sum, it doesn’t do much good if the module keeps that sum to itself. Passing variables to another module strengthens decoupling between the two. The more coupling, the weaker the cohesion, so an object-oriented programmer is always interested in writing code that has strong cohesion and weak coupling. A module with strong cohesion and weak coupling is a candidate for a method of an object. Object-oriented programming languages involve the use of classes of objects and objects have strong cohesive methods and also have data called “attributes.”
Programming languages or source code must be translated into machine code because the machine can only execute binary code. There are basically two ways to do this translation. The first is to use a “compiler.” The compiler is language-specific. This is analogous to having a human translator that only translates between English and French. The compiler examines the source code and looks for syntax errors. It reports all syntax errors in the source code. The programmer must fix these errors before he or she can get what is called a clean compile. When there are no syntax errors, the compiler produces a machine language translation called an executable module. You may have seen files on your system that have an extension of .exe. These are executable files on machine code.

Another method of translation is an “interpreter”. Commonly, an interpreter does not produce an executable module like a compiler. Instead, the interpreter looks at one source code statement at a time and sees if there’s a syntax error. If there is, the interpreter reports a syntax error and then shuts down. The programmer must fix the error and then submit the source code to the interpreter again. When a statement doesn’t have any syntax errors, the interpreter translates the statement into machine code and executes it, then the interpreter looks at the next statement for syntax errors. Eventually, perhaps after many submissions, all syntax errors are fixed and the program is translated and executed one line at a time. The main differences then between a compiler and interpreter is that the compiler tells a programmer about all syntax errors at one time while the interpreter tells about only one syntax error at a time, and a compiler creates an executable module while the interpreter doesn’t. The result is that once you have an executable module from the compiler, you do not have to bother the compiler again to execute the program unless you make a change to the source code while the interpreter must be used every time you want to run the program. Sometimes a programming language has two stages of execution of its source code. The first stage is accomplished by a compiler but the output of the compiler is not an executable code. Java goes through a compiler that produces what is called byte code. Byte code is then put through a just-in-time compiler that translates the byte code into machine code, and the machine code is executed immediately.

There are two types of errors that typically are made by programmers in writing code. One is syntax errors and the other is logic errors. Syntax errors are the types of errors that are caught often during the translation to machine code, whereas logic errors are usually caught either in the design phase and eliminated there or they are caught at the end when they’re doing testing. Syntax errors involve incorrect spelling of keywords, letters, words that are germane to the language, incorrect use of the keywords so that you use it in a sense or a statement where it doesn’t belong and also by omission of leaving out keywords. So a lot of syntax errors have to do around surrounding keywords - not all however.

Logic errors involve having to go back and perhaps designing them out of the design. If you get through the design phase and you’ve designed a logic error into your solution and you don’t catch that until you do testing, it may involve going back to the design phase and correcting it there. Some people do not do that. They look at the physical code and try to fix it in the program language itself. But best if it’s done probably in the logic solution because that’s where it’s easier to see those logic errors. The instructions derive the wrong results so, you told the machine syntactically, something correct, syntactically need to do but you told it the wrong thing to do, so it gives you a value and outputs that value and it’s the wrong result. And the machine cannot know that it’s the wrong result because it is just doing what it’s told and it’s being told syntactically correct. So for all it knows, it’s doing the right thing.

Instructions that cause a program to terminate or ABENDER, another source of logic errors. If you do instruct the computer to do some things, it will involve the possibility of the machine not being able to carry out the program itself. So it would terminate the program. Then there are instructions that are not in the proper sequence. So you do something, maybe you output a result before you calculate it which seems kind of ridiculous, but first-time programmers will make those kinds of sequence errors and infinite loops – something called infinite loops – are another source of logic errors where you start an iterative process, something is going to go over and over again but you don’t give it the proper way to get out of the iterative process so, it continues on forever or would except that nowadays, parting systems [ph 0:14:27] can notice infinite loops and terminate your program, and it’s another source of ab end. ABEND by the way is an abnormal termination.

Testing doesn’t catch all errors. When you do your best you can as a programmer, you think about all the possible things that could go wrong, you ask the user what has happened in the past that has gone wrong, you put all those together and you try to program against all those possibilities. But doing even your best effort, you can’t design and code out all the possible problems that could occur. If you were to try to do that, you’d never finish the programs. Obviously, you need to finish and get it done at the same time that you’re trying to address all the common things that you can think of that would go wrong.

For instance, between 1985 and 1987 there was a machine that exposed six patients with massive overdoses and six of those people died. And in October 26, 1992, a computer-aided dispatch system for ambulances in London had a software failure that resulted in 46 deaths because the ambulance didn’t get there on time.

There are some studies which address a controversy about software being helpful or injurious to patient care. A couple of studies cited here saying that software actually makes things worse and the one on the bottom saying that this can be an improvement for a lot of patients. This controversy probably will go on for some time to come. But I think over all, it can be stated that software generally helps rather than hinders healthcare for patients. The problem is that programmers need to understand and in health informatics we need to understand that mistakes are made, yes, but mistakes here are catastrophic or could be catastrophic. So it’s important to realize that when we work in the field of health informatics.

Okay. In this topic, we’re going to look at some things that have been mentioned before but we’re going to go into a little more detail. The first one is storage data. So we’re going to look at storing data in the computer, data types, which goes hand-in-hand with storing that data because the machine needs to know what data type it’s storing. Constants which we’ve mentioned before, categories of source code will take a look at what those actually are and logic constructs sequence alternation, iteration, concurrency and recursion are the main tools of programmers – particularly the first three: sequence, alternation and iteration. Concurrency and recursion, we’ll talk a little bit about them but we’ll show much more about the first three.

Data must be stored in the computer and we need to be able to get back to that data when we need it. In order to do that in a program, we need to have a name for the storage location where the data is. If you go back in history, programmers used to have to actually remember the actual storage, address and code to enter their program but that’s not necessary anymore. All we have to do is come up with some nice name, handle or tag – whatever you want to call it. We’re going to call it a variable name that when we mention or write that variable name into our program, the machine will go out to the storage location that is tied to that variable name and bring it back to us so we can use that value. So the variable name represents the data in the memory.

There are two types of data that we can categorize at least in two different ways. One is primary data, that’s data that’s given to us. We cannot derive it. An example would be the customer name. And then the other one is secondary data, data that we can derive, and there are four different kinds of secondary data. Accumulators are easy to understand. They’re like the sum of repair charges for an automobile, the sum of charges for anything that we buy at a store.

Counter is counting a number of different things. So the number of deposit transactions at a branch of a bank during a one day’s processing is an example, and then the third one is calculated. That is a function of tool or their values, like gross pay is equal to pay rate times the number of hours worked.

Lastly, this one is perhaps not thought of as secondary field too often outside the realms of computer and that’s the interpreted field. The example I give here is the sales person’s total sales exceeds $10,000 in a month, they receive a 5 percent commission rate and if less than or equal to $10,000, they receive a 3 percent commission rate. The commission rate is interpreted from the total sales figure.

Okay, continuing the storage of data. The memory location where the data is located sometimes called the address. All variable values are stored as I said before in a memory location. Stored values are retrieved from memory using that variable name. And then an array is used for storing data that is repetitive as a table to values, and there are a couple of examples here. One is an exchange rate for US dollars with other currencies in the world. There’s a link here that you can go to look at a table of examples, and the US government GS pay scale.

[END AUDIO]

Component 4/Unit 5-2
Health IT Workforce Curriculum
1

Version 1.0/Fall 2010

