
Component 4/Unit 5-1

Audio Transcript

Welcome to Unit 5 of Component 4. This unit will introduce you to software concepts. When you finish this unit, you should know the purpose of programming languages, what the different programming languages are. You should know the software development life cycle and why programs have to be compiled or interpreted, and you should know the components of a programming language. You should also know something about the newer object-oriented languages.

There are two main categories where programming is used. One is for application software and the other is for operating system software. We’re all familiar with application software and its many forms. Basic two categories could be personal efficiency software, where like a spreadsheet, word process or presentation software, or software that has more specific purposes and not less generally applied. It would be like photography, text preparation, boat design, and then mentioning that it’s also prevalent in a lot of industries, scientific applications such as medical research, math, NASA and in business software such as general ledger, accounting and sales. And in healthcare software, there are a number of software systems such as NEHR, patient monitoring, imaging, information retrieval, clinical decision support, et cetera.

There are many functions of an operating system, from starting and shutting down a computer to providing a graphical user interface of menus and visual images that make using a computer easier. In fact, the main purpose of an operating system is to make the computer easier to use and more efficient. There are many functions of an operating system. Operating systems manage memory, coordinate task execution, monitor performance, provide file management, interact with or control a network and administer security.
There are three main types of operating systems in use today. An independent operating system runs on a single computer and may or may not interface with a server-operating system. Its main function is to attend to the machine’s local user needs. A server-based operating system has a task of supporting a network. It resides on a server machine and other machines on the network typically called client machines, receive resources and services from the server-based operating system. Mobile-based or embedded operating systems are housed on a chip that resides in a smartphone or in some other mobile device. Everything from a sewing machine to a heart rate monitor can have a mobile-based operating system chip.
In this next topic, we will take a look at the history of programming languages and investigate software and language categories.

First-generation machine languages use binary code alternatively called machine code. Machine code is based on the base-two number system. The base-2 number system cannot store 10 digits like the base-10 number system we all use. Instead, it can only store the digits zero and one. This is like a light switch where the light is either on or off. Using a combination of these on/off switches called bits, digits, alpha characters and special characters can all be represented in machine memory as bytes of data. Machines still use binary code today. Early programmers had to code their programs using ones and zeros. But writing binary code proved difficult as you can imagine, so a second generation of languages was born to remedy the situation.

Assembler languages based on IBM’s name for their language use short-statements to carry out a number of binary statements. This shortened and at the same time made programs easier to write. Still, third generation languages made software easier to write and understand than assembler languages. COBOL was one of these languages and was created to be similar to the English language. Procedural languages, as the third-generation languages, came to be known were often application-specific. COBOL was used primarily in business environments while FORTRAN was used for scientific purposes. Today, these languages are often referred to as legacy languages as they have been and/or still being replaced by newer languages.

Scripting languages run inside a host languages code and are executed by a Web browser to add dynamic features to a Web page like animated graphics, pop-up windows, forms and often providing interaction for the user. Considered to be the heir to procedural languages, object-oriented languages are in wide use today and are effectively replacing long-standing procedural language applications. OOP [ph 0:05:50] as these languages are sometimes called involved objects that contain data and procedures that encapsulate a particular entity that the user of the system needs to keep track of or process. For example, a customer object might contain customer information such as name, address, account number and other contact information. And along with that information, the object can contain a process that involves acquiring past customer transactions with the company. This means that many applications that need customer information can access the information through this one object. Procedural applications, on the other hand, used to all have the same code duplicated within each program to acquire such information. So part of the appeal of OOP languages is that duplication of effort and code is reduced.

A data-oriented language is often referred to as a fourth-generation language. SQL is a data-oriented language that when executed maintains or retrieves data from a database. Since databases have become extremely important in most computer environments today, SQL has become increasingly important, too.

You might be asking yourself why there are so many different languages. There are many reasons for this and some of them are listed on this slide. One of them is that legacy languages have been around a long time. A lot of software has been written in them, particularly COBOL, and is very difficult to replace a language like COBOL overnight. It takes a lot of money to write new software in the newer languages to replace it, and so it’s still being used by many industries today. The second reason is different languages are used for different purposes. For instance, Javascript is used for Web page enhancement, VB.net is used for that plus desktop applications, SQL is for database acquisition, PHP is a free-open source scripting language used primarily in Linux Web servers, VBA is a Microsoft language personal enhancement software such as Word, Excel, PowerPoint and Access, use VBA. And new technology requires new languages – Javascript again because it’s used in Web pages and still, Web pages are considered to be somewhat new. Applets run on clients or user machine providing enhanced Web applications, and Perl which processes text effectively. So, when text needs to be used in an environment, Perl is often used for that reason; and the last one is new languages to take advantage of the new features. Ruby on Rails is used on Web sites where database access is important and Ajax provides fast information in response to user request, and then object-oriented languages like Java and C++ are replacing over time legacy languages like COBOL.

Special purpose languages for healthcare include MUMPS, MIIS and Magic, all stemming from Neil Pappalardo, founder of Meditech. Some electronic health record systems are written at least in part using a language from this family of languages.

In topic three, we’ll take a look at the software development life cycle. In particular, we’ll take a look in some detail at the logic solution, the program language solution, and then we’ll take a look at translating the program language into machine code.

A Software Development Life Cycle or SDLC involves several steps. The first step is a requirements analysis. This is where the programmer meets with the user to determine what the user output requirements are. This is important because a programmer must meet these requirements when the project is done. The second step is for the programmer to design the software. In doing so, the programmer is interested in avoiding logic errors, making the solution efficient and making sure that the solution is easy-to-understand for other programmers and that they’re using a well-structured code solution.
Involved in all stages of the SDLC is testing. After the design phase, test-checking does occur to make sure the design works. This is where the programmer takes some example data and runs it through their design to see how it works. A formal walkthrough design of the design may follow where the programmer presents their design solution to other programmers and those other programmers will critique the solution. Not listed here is the programmer will actually code this into a language. It’s not listed here because predominantly, the design is really an important part. You’re just carrying out that design and using the syntax of a particular language when you write it. And then when it’s fully written, the program unit test is made where the actual software is run more or less by itself or maybe in conjunction with a couple of other programs that it needs to address or interact with to see if it works.

In any of these phases of testing, the programmer may go back to the design phase to design out a flaw that they didn’t see before. Eventually, the program works in its unit test and can then be tested in a system to see how it fits in with the other programs in the system. Assuming that everything looks okay, and all kinds of data have been processed and they’ve tried to make sure that the program works effectively, it would then be implemented into the production system and actually run in production.

After it’s been implemented, there’s a maintenance period where the programmer may be responsible for any problems that occur. After that, it’s then turned over to another maintenance crew usually that maintains the software over a longer period of time, and at some point, the software has outlived its usefulness and will become obsolete. The half-life of software over time has decreased. In the beginning, software half-life used to be extensive but nowadays, half-life software average is getting shorter and shorter.

The outcome of the software design step is to come up with a logic solution for the problem. The intent here is to use some kind of tool to design software that will meet the specifications of the user and also to give the programmer time to evaluate one solution versus another before they actually write it into the programming language, what we might call the physical solution. So, they evaluate the logic solutions and they come up with three or four or five of them and choose one over the other. So, they might combine two of them and come up with another solution that has the best of both solutions. So, it’s intended to be a step where logic errors are designed out and where the best solution is reached.

There are a number of tools to do this. They fall into basically for software, two different categories. One is text-based design tool and the other is a graphics-based design tool. The only text-based design tool of any importance is pseudocode. It’s been around a long time and it’s supposed to be -- was intended and is still is a step between English and the programming code. So, it’s not English and it’s not the programming code; it’s somewhere in between. So, it’s like we don’t want to go directly to the physical solution, we don’t want to go right to the program language, but we want to test out different alternative designs – logic solutions if you will – before we do that. And we can do that here in pseudocode. The problem with pseudocode -- or a problem with it is there’s no standard for pseudocode syntax. So one programmer’s pseudocode will not necessarily look like another programmer’s pseudocode.

The second group is graphics-based design tools. And the first one of those is flowcharting. It’s one of the oldest design tools and the beginning has allowed designers to design unstructured code often called “spaghetti code.” This negative term came about when flowcharts allowed programmers to draw arrows to show the transfer of control and logic. The arrows would be drawn all over the page in every direction, crisscrossing when necessary. With all these intersection lines, the resulting diagram often looked like spaghetti. By changing a few rules, flowcharting can be made a lot better but many programmers still draw flowcharts with arrows and sometimes still design spaghetti code.

Warnier-Orr is another graphical tool. It uses braces to modulize code and it demands that each brace be identified. This makes it easier to show module names and to subset code. In addition to way that subsets of code are inter-linked or coupled is explicitly indicated in the diagram. Warnier’s strengths lies in its demand for the entire structure of the program being done before the elementary logic code is inserted. This allows for good structure and fits in nicely with top-down design principles. Another graphical tool is Nozi Snyderman [ph 0:16:59]. This has diagrams -- it’s sort of a compromised between flowcharts and pseudocode where you have pseudocode inserted into boxes and the boxes shown in sequence as to their execution.

An addition to these two basic design tool groups, we also have a newer tool, object design tool, called Unified Modeling Language or UML. And UML is used predominantly to design objects for object-oriented languages rather than for software, although it does have within it the scope to be able to be used for the design of the software. The design of software piece for UML looks quite a bit like flowcharting.

Okay. Let’s take a problem and solve it using these various design tools to see what they look like. We’ll use this very small problem of finding the gross pay for an employee given the number of hours work and the pay rate. In pseudocode as in with all the other design tools and with all programming languages, code has to be within what we call a module. So the first thing I’m going to do in pseudocode is name the module that contains this code, and the name of that module that I’ve chosen is “total pay.” After that statement, we need to input the two pieces of data that we are going to multiply together to get the gross pay, pay rate and hours worked. We don’t have them in computer memory. So to make that happen to get them into computer memory so we can work with them, we’ll use this input statement in pseudocode.

The second statement within the module is to actually determine the gross pay and we use what’s called an assignment statement to do that, where on the right hand side of an equal sign we have the equation that we’re going to the result of which we’re going to put into this value on the left of the equal sign called “gross pay.” Once that’s done, then we can turn to the third statement and output that, or tell the user what the gross pay is. And finally, the end-module statement delineates the end of the module and everything inside the module. This is indented so that it’s easier to follow and know what is in this module.

A logic solution for this gross pay problem shown in graphical tools looks different than in pseudocode. Flowcharting in particular on the left has a number of arrows indicating direction of execution at the top as “total pay” that’s module name and it uses different symbols to represent different operations. So the first start is an oval, and then underneath that for input is a parallelogram, and for a process statement like the assignment statement where “gross pay” is derived is rectangle, and finally at the bottom, outputting “gross pay” the symbol I’ve used is for the physical output screen. Flowcharting has different symbols for different physical output devices.

The Warnier on its right, again it uses braces to modulize codes. So on the left you have the name of the module, then you have a brace and on the right, the contents or the statements that are in the module and the same statements that we’ve seen in pseudocode and in flowcharting appear there. Nozi Snyderman in the lower right-hand corner uses boxes and pseudocode together, sort of a compromise between flowcharting and pseudocode where the name of the module is at the top and then the statements are in boxes underneath, the boxes are in sequence as to their execution.

[END AUDIO]
Component 4/Unit 5-1
Health IT Workforce Curriculum
6

Version 1.0/Fall 2010

