Component 4/Unit 5-6
Audio Transcript

While the class is the idea or the design of a particular object that we need to keep track of and doesn’t have any actual information in it, the object itself is an instance of that class and therefore has information specific to a particular object of that class. The process of creating an object of the class is called instantiation. The analogy we’ve been using, the car off an assembly line, would be an instance of the class and the class would be the design of that car. Until the car rolls off the assembly line, however, there is not an instance or an object of that class. And likewise, a hospital patient being checked into the hospital, there may be a design of what that patient will look like in the system – information about that patient – but until a patient checks into the hospital there isn’t a specific instance of that class. In Programming 2 objects are things we want to keep track of and they are instantiated in the program when they are needed. A class then has attributes and methods. Attributes describe the class and methods are things that the class will be able to do. But the class itself doesn’t have any actual values stored with the attributes that describe a particular object. It just has these attributes saying an object created of this class will have values. Likewise the methods do not have codes that can carry anything out. Once the object is instantiated, however, then we have an object that is a specific instance of that class and it will have attribute values that will distinguish it from other objects of the class and will also have methods with code behind it that could be executed and carry out things that the object needs to do.
So let’s look at a few examples of objects. This one is about an automobile. We’ve been looking at that analogy and in this case it’s a Subaru Forester, 2003, etc. You can see the other data that’s listed here in the attributes – in the middle of the UML diagram to the right. And it also has methods down below. Since this is an object we’d be able to perform these methods and move the object forward and backward as the names of the methods imply.

Another example would be the hospital patient. In this case we have a specific object of the hospital patient in class and therefore we have, in the name attribute we have C. Smith, an address for C. Smith, a phone number, etc. This distinguishes this particular object as that belonging to C. Smith as opposed to another object which might be for Sam Jones. The methods down below are also listed as Release, Report, Change Room, Notify Doctor, and Change Medication. Presumably if we executed one of these it would carry out the function that we need to have for this particular object of C. Smith.
One more example of the UML diagram for this case is something called transaction. In this particular UML diagram there are no examples of data. There are attribute names and method names. We do not have a specific tran type tran amount so this would be a class diagram for transaction.
And now for an example of the object code—those methods that we’ve been talking about. On the left-hand side is a set of code. All of this code is written in vba. But that is not as important as the fact that on the left is the application code and on the right is the object code. From the blue lines we are invoking methods of the object on the right so if you see the line call find tran file and then the blue line that goes over to the module on the right-hand side, find tran file, it would open up a file and that would be done. And we would go back to the application code on the red line. Likewise, invoking other methods are indicated with blue and red lines – always blue lines going to the object code and red lines coming back when that method has been executed. The code on the right-hand side is the object. Those methods…that code…can be moved and inserted into a different application at another time. The same methods with the code in them can be executed by that other application. This way code can be reused in other applications. It doesn’t have to be written from scratch. Also, the code and the object has been tested. This reduces the amount of testing that needs to take place whenever an application is written.
In summary, programming languages are what we need to execute on computer hardware so that we can get things done. They come in various levels, the lowest level being machine code and all the higher levels have to be translated into machine code. The best way to write software is to design it using some form of formal design tool. The design step itself is just one phase of the software development life cycle.
In this unit we have learned that program code can cause horrendous problems, especially in the health care field. We have learned about the logic constructs commonly used in programs – Sequence, Alternation, and Iteration. We have learned that if we break the module’s code up into modules that some of those modules can be strongly cohesive and migrate to other applications that can execute them and not have to worry about testing that code and not have to write it from scratch each time we need to use it. We’ve also learned that objects in programs can be instantiated to provide attributes and methods, storage locations in terms of attributes, and program code for methods that can be executed in other applications.

This is the end of Unit 5 in Component 4. Thank you for listening.
[END OF AUDIO]
Component 4/Unit 5-6
Health IT Workforce Curriculum
1

Version 1.0/Fall 2010

