
Component 4/Unit 9d

Lecture Transcript
Slide 1: 3. Systems Design
Phase three of the SDLC is systems design and includes a review of the system requirements, the system design process itself and presentation of the systems design specification. The goal of systems design is to build a system that is effective, reliable and maintainable. A system is effective if it satisfies the defined requirements and constraints, and is accepted by users who use it to support the company's business objectives. A system is reliable if it successfully manages errors. A system is maintainable if it is well designed, flexible and developed with future modifications in mind.
Slide 2: Output and User Interface Design
Outputs present information to users and are the most visible component of a working information system.
Output design considers user needs for screen and printed forms of output. Distribution methods differ according to the audience: the organization may require formal internal reports while an online customer might require colorful, market-savvy Internet pages. Types of output include Internet-based information delivery, e-mail, blogs, instant messaging and wireless devices such as smart phones. Implementation methods for specialized output include retail point-of-sale (POS) terminals, automatic teller machines (ATMs) and programmable devices such as MP3 players. Although trying to go green, organizations still require printed output. Whether printed or viewed on-screen, reports need to be easy to read and well organized. Companies use different output control methods to maintain output integrity and security. Reports need to have appropriate titles, a report number or code, printing date, information time period and consecutively number pages.
User interface design focuses on user interaction with the computer including input design and procedures. A user interface (UI) describes how users interact with a computer system and consists of all hardware, software, screens, menus, functions, output and features that affect two-way communications between the user and the computer.
Input design includes input methods, volume, screen design, error controls and source document design. The objectives of input design are: the selection of a suitable input and data entry method, the reduction of input volume, the design of attractive data entry screens, the use of validation checks to reduce input errors, the design of required source documents and forms and the development of effective input controls. Data capture is performed with an automated or manually operated device to identify source data and convert it into computer-readable form. Data entry is the process of manually entering data into the information system usually in the form of keystrokes or mouse clicks. In legacy systems the data entry people would key in the data to an electronic file; during specified times the computer system would use those files as input and run programs to process the data; an example of this batch processing is the collection of timecards for processing paychecks. Nowadays most business activity involves online data entry or online input.
Slide 3: Data Design
Data organization includes the consideration of data structures, file processing, database systems. (see Component 4 / Unit 6 on Databases and SQL)
Data storage and access:
Logical Data Storage refers to data that a user can view, understand and access, regardless of how or where that information actually is organized or stored. This includes alphabetic and numeric characters, data elements or items and records.
Physical storage is strictly hardware-related because it involves the process of reading and writing binary data to physical media. Physical storage refers to blocks and buffers.
Data Coding and Storage: Bits, Bytes and Unicode, EBCDIC, ASCII and Binary.
File and database control includes all measures necessary to guarantee data storage is correct, complete and secure: limiting access to the data, data encryption, backup / recovery procedures, audit-trail files and internal audit fields.
Slide 4: System Architecture
A system architecture is the conceptual model defining the structure and / or behavior of a system. It represents an existing or future system and the process and discipline for effectively implementing the system design. A systems architecture is mainly concerned with the internal interfaces among the system's components or subsystems and the interface between the system and its external environment, especially the user. System architecture includes servers, clients, client/servers, Internet-based architecture, processing methods, network models and wireless networks.
Hardware is covered in Component 4 / Unit 3
Software is discussed in Component 4 / Unit 4
Networks are covered in Component 4 / Unit 7
Processing methods are the programs or software as seen in Component 4 / Unit 5
Security issues are discussed in Component 4 / Unit 8
Slide 5: 4. Systems Implementation
During systems implementation, the system design specification is the blueprint for constructing the new system.
The initial task is application development which is the process of constructing the programs and code modules. This is where the design is translated into a functioning application. Modules are small units of program code that are easy to understand and maintain. Analysts and programmers (or programmer / analysts because the positions are combined) use traditional structured or object-oriented (O-O) methods. Sometimes the SDLC is used as a methodology but it's called software development lifecycle and is done on a much smaller scale. Unit testing is done on the individual programs or modules to identify and eliminate execution errors that could cause the program to terminate abnormally and logic errors that could have been missed earlier during program walkthroughs. Following successful unit testing, integration testing is done against two or more programs that depend on each other to ensure they work together as expected.
System testing involves the whole information system and includes all typical processing situations. It is intended to assure users, developers, and managers that the programs meet all specifications and that all necessary features have been included. Successful completion of system testing is the key to user and management approval which is why system tests are also called acceptance tests. System testing should have been completed by the end of the systems implementation phase so that the end users find no problems. It is embarassing to say the least when a program, program enhancement, system or system enhancement is put into production only to have problems.
Documentation describes an information system and helps the users, manager and IT staff who must interact with it. Accurate documentation will reduce system downtime, cut costs and speed up maintenance tasks. Documentation needs to be done for programs, systems, operations and the users
No system can be successful without proper training, whether it involves software, hardware or manufacturing. A successful information system requires training for users, managers and IT staff members. The whole systems development effort depends on whether or not people understand the system and know how to use it effectively. Training can come from vendors, outside training firms or IT staff and other in-house resources.
Data conversion is an important part of system implementation. During data conversion, existing data is loaded into the new system. This process should be automated if possible and strict input controls need to be maintained during the conversion process because data is extremely vulnerable.
System changeover is the process of putting the new information system online and retiring the old system. Before the system changeover can occur, the system must be tested and documented carefully, users must be trained, and existing data must be converted. The changeover can be fast or slow depending on the method: direct cutover, parallel operation, pilot operation and phased operation.
After the new system is operational, a post-implementation evaluation of the results is made as part of the final report to management. This evaluation examines all aspects of the development effort and the end product. The final report to management includes the following:
· final versions of all system documentation
· all planned modifications and enhancements to the system that have been identified
· a recap of all systems development costs and schedules and comparison of actual costs and schedules to the original estimates
· the post-implementation evaluation for an assessment of the overall quality of the information system
Slide 6: Testing
The testing process can be summed up as follows: create the test plan and test cases, build data used as input, execute the test cases which includes the building of a testing environment, automation of the execution of test cases and creation of scripts to run the tests, fix the bugs if any and retest the code and repeat as necessary.
Testers usually try to "break the system" by entering data or performing actions that may cause the system to malfunction or return incorrect information. For example, a tester may put in a city in a search engine designed to only accept states, to see how the system will respond to the incorrect input. [from http://www.businessdictionary.com/definition/system-testing.html]
Slide 7: Test Plan
Good testing includes the creation of a test plan to ensure all situations have been tested, successful conditions are seen and problems corrected. Here we see a list of some of the items often included in a test plan.
Slide 8: Test Cases
A test case is a set of conditions or variables under which a tester will determine whether an application or software system is working correctly or not.
Formal test cases: In order to fully test that all the requirements of an application are met, there must be at least two test cases for each requirement: one positive test and one negative test; unless a requirement has sub-requirements. In that situation, each sub-requirement must have at least two test cases. Keeping track of the link between the requirement and the test is frequently done using a traceability matrix. Written test cases should include a description of the functionality to be tested, and the preparation required to ensure that the test can be conducted. A formal written test-case is characterized by a known input and by an expected output, which is worked out before the test is executed. The known input should test a precondition and the expected output should test a post condition.
Informal test cases: For applications or systems without formal requirements, test cases can be written based on the accepted normal operation of programs of a similar class. In some schools of testing, test cases are not written at all but the activities and results are reported after the tests have been run. In scenario testing, hypothetical stories are used to help the tester think through a complex problem or system. These scenarios are usually not written down in any detail. They can be as simple as a diagram for a testing environment or they could be a description written in prose. The ideal scenario test is a story that is motivating, credible, complex, and easy to evaluate. They are usually different from test cases in that test cases are single steps while scenarios cover a number of steps.
Slide 9: Contents of Test Cases
This slide shows some of the items included in test cases and should give you a clue as to how comprehensive testing needs to be. Of course, different information will be collected according to the needs of the system developers. One thing we need to remember is about documentation. Proper documentation helps keep track of executed tests. It also helps create a knowledge base for current and future projects. Appropriate metrics / statistics can be captured to validate or verify the efficiency of the technical design / architecture.
Slide 10: Testing Sequence
Unit testing focuses on testing each unit or piece of the code. Typically, unit testing is done by the programmers to ensure individual components are working correctly.
Integration testing covers the integration of "units of code" or components. Each level of testing builds on the previous level.
System testing focuses on the system as a whole and is often performed by a dedicated testing team. System testing includes testing, verification and validation of both the business requirements as well as the application architecture.
Slide 11: Kinds of Tests
Although different testing organizations may prescribe different tests as part of system testing, this list serves as a general framework or foundation to begin with. [Wikipedia] To generate a 'good' set of test cases, the test designers must be certain that their suite covers all the functionality of the system and also has to be sure that the suite fully exercises the GUI (graphical user interface) itself. Usability testing is a black-box testing technique. The aim is to observe people using the product to discover errors and areas of improvement. Usability testing generally involves measuring how well test subjects respond in four areas: efficiency, accuracy, recall, and emotional response. The results of the first test can be treated as a baseline or control measurement; all subsequent tests can then be compared to the baseline to indicate improvement.
Performance testing covers a broad range of engineering or functional evaluations where a material, product, system, or person is not specified by detailed material or component specifications: rather, emphasis is on the final measurable performance characteristics. Testing can be a qualitative or quantitative procedure. Performance testing can refer to the assessment of the performance of a human examinee. For example, a behind-the-wheel driving test is a performance test of whether a person is able to perform the functions of a competent driver of an automobile. In the computer industry, software performance testing is used to determine the speed or effectiveness of a computer, network, software program or device. This process can involve quantitative tests done in a lab, such as measuring the response time or the number of MIPS (millions of instructions per second) at which a system functions. Qualitative attributes such as reliability, scalability and interoperability may also be evaluated. Performance testing is often done in conjunction with stress testing.
Compatibility testing, part of software non-functional tests, is testing conducted on the application to evaluate the application's compatibility with the computing environment. The point of exception handling routines is to ensure that the code can handle error conditions. In order to establish that exception handling routines are sufficiently robust, it is necessary to present the code with a wide spectrum of invalid or unexpected inputs, such as can be created via software fault injection and mutation testing (which is also sometimes referred to as fuzz testing). Exception handling verification should be highly automated, and the test cases must be generated in a scientific, repeatable fashion.
Load testing is the process of putting demand on a system or device and measuring its response. Load testing is performed to determine a system's behavior under both normal and anticipated peak load conditions. It helps to identify the maximum operating capacity of an application as well as any bottlenecks and determine which element is causing degradation. When the load placed on the system is raised beyond normal usage patterns, in order to test the system's response at unusually high or peak loads, it is known as stress testing. The load is usually so great that error conditions are the expected result, although no clear boundary exists when an activity ceases to be a load test and becomes a stress test. Stress testing is a form of testing that is used to determine the stability of a given system or entity. It involves testing beyond normal operational capacity, often to a breaking point, in order to observe the results. Stress testing may have a more specific meaning in certain industries, such as fatigue testing for materials.

Component 4/Unit 9d
Health IT Workforce Curriculum
6

Version 1.0/Fall 2010

