
Component 4/Unit 6d
Lecture Transcript
Slide 1
In this topic we will design a small database. We will start with a description of what is needed. This will represent the specification gathering phase of database development. We will create a data model that at first may not be terribly accurate. Then we will use a process called normalization to enhance the logical efficiency of the model. We will also describe things that have to be considered in the model such as functional dependencies and constraints. Finally we will produce a database design based on the last iteration of the model stipulating relationships and keys.

Slide 2

The database we are going to design is to keep track of new medications that are in trial testing. We need to keep track of the medications, the trials for those medications and the clinical institutions that are doing the testing.
Slide 3

In the specification gathering phase it was noted that certain data about the trial institution needed to be kept in the database. This also of course makes the institution something that needs to be tracked. The data is the name of the institution, contact information for the institution and the institution's address.

Slide 4

In addition to the institution, data about the medication also needs to be kept in the database. The information includes the drug name, its creator, date of creation, its family, use code and a description of the medication. In addition the trial start date for the medication, the trial end date (if known), a description of the trial results and the resource for the cost of the trial will also have to be kept in the database.

Slide 5

Our first attempt at a data model for this database might look like this. There are two entities, Clinical Trail Testing Institution and Medication. Notice that candidate keys have been identified. In the clinical trial testing institution entity the name of the institution and the contact information for the institution have been marked with CK to designate them as candidate keys. Likewise the name of the drug and the trial code are identified as candidate keys for the medication entity. The relationship is a many-to-many relationship with the minimum cardinality of one in each direction. So a medication can have from one to many trial institutions and a trial institution can have from one to many trials for medications. Although usually the development of the data model will require many user meetings and will stretch out over a considerable amount of time, we will shorten the process here and move on to the normalization process.

Slide 6

The normalization process is used primarily to eliminate addition, deletion and update anomalies.

During this normalization process it will be necessary to identify attributes in the entities that serve as identifiers for other attributes of the entity. When all other attributes of an entity are shown to be determined by an identifier, the identifier is a candidate key. The other attributes are said to be dependent on the candidate key. Another way of saying this is that the other attributes are said to be functionally dependent on the candidate key. There may also be situations where not all attributes are functionally dependent on an identifier. This may have to be addressed in the normalization process.

Constraints are a way of carrying out data rules. For instance, making it necessary that attributes have unique values that otherwise might not contain unique values. This is often necessary in creating a one-to-one relationship.

The referential integrity constraint ensures that a foreign key in a relationship exists as a primary key in the entity it has a relationship with. After all, it wouldn't make much sense to have a relationship where the foreign key didn't match a primary key. There always needs to be a match.

Slide 7

Here are some examples of functional dependencies. In the diagram "CK" signifies that the attribute is a possible candidate key. Since we are still early in the data modeling process everything is still questionable, but it is useful to start the model to understand what we think we know. In the entity Clinical Trial Testing Institution two attributes have been selected as candidate keys, InstName and InstContact. it is relatively easy to see that all of the other attributes are dependent on InstName. it may be a little less obvious why all of the other attributes are dependent on InstContact and perhaps this will prove to not be the case as more information is collected from the users. In the medication entity DrugName and TrialCode have been selected as primary keys. All other attributes do seem to be dependent on DrugName and since there is one row in this entity for each trial, all other attributes are also dependent on TrialCode.

Slide 8

Here is an example of the referential integrity constraint. The entity on the left is for all medications at the pharmacy. The entity on the right is for all medications that various patients are taking. A referential integrity constraint can be set up between patient medications and pharmacy medications such that a medName in the patient medications entity must occur as a primary key in pharmacy medications. Thus Medname in patient medications is a subset of MedName in pharmacy medications. The referential integrity constraint will automatically check to make sure that when a new patient is added to the patient medications entity that it’s MedName occurs as a MedName in the pharmacy medications. If it were not to occur, then the addition of the patient to the patient medications entity would be rejected. Notice the cardinality of the relationship between these two entities. A patient row in Patient medications is related to one and only one pharmacy medication. Another way to say that for the minimum cardinality is that a patient medication must be related to one pharmacy medication (the minimum cardinality is one, not zero). This illustrates the referential integrity constraint.

Slide 9

We are now ready to begin the normalization process for our small drug trial database. There are a number of levels in the normalization process. The first level is called the first normal form or 1NF. For a database to be in first normal form it has to adhere to the definition of a relation. To be a relation an entity must have all its attributes belong to the entity. You can't have data about a patient and data about the cost of a medical process in the same entity. You can think of this as mixing apples and oranges. Each attribute must be uniquely named and must only contain one piece of data, no composite attributes allowed. Also, the sequence of rows and columns cannot be important.

Slide 10

In examining our small drug trial database, the only thing that is in violation of it fitting the definition of a relation is that the InstAddress attribute of the clinical trail testing institution entity is a composite attribute made up of the InstStreet, InstCity, InstState and InstZip.

Slide 11

Here we have our small drug trial database in first normal form. Notice the expansion of attributes in the clinical trial testing institution entity. InstAddress has been replaced with InstStreet, InstCity, InstState and InstZip.

Slide 12

Second normal form in the normalization process involves the following. This normal form eliminates deletion and insertion anomalies that come about when the entity has attributes that are dependent on something other than the candidate key. The second normal form not only will address deletion and insertion anomalies but will quite often help reduce the number of candidate keys in entities. Composite keys have to be evaluated carefully. The other attributes in an entity must be dependent on the entire key, not just part of a composite key.

Slide 13

In summary an entity is in second normal form when all other non-key attributes are dependent on the entire key. A relation in second normal form is assumed to be in first normal form.

Slide 14

Our small drug trial database is not in second normal form because there are attributes in the medication entity that are not dependent on the entire key. For instance TrialStartDate is dependent on TrialCode. It is not dependent on DrugName. This is a relatively common problem in data modeling and sometimes is not clearly evident without user interviews. The way to address this is to split the entity up so that a new entity is created to house the trial data. Another problem that will be resolved at the same time is the many-to-many relationship between clinical trial testing institution and medication entities. If you recall a many-to-many relationship cannot be carried out in the database. By breaking the trial data out as a new entity and placing it between the two entities we can eliminate the many-to-many relationship. In fact if you have a many-to-many relationship in your data model it either means that you have a missing entity as we have found here or something called an intersection table will have to be inserted between the entities. Intersection tables do not contain any attributes except the primary keys of the two entities.

Slide 15

Here the new Trial entity has been inserted between the two entities and the relationships between the two original entities and the trial entity are both one-to-many. Notice that the medication entity now has only one candidate key and therefore that candidate key is more likely to become the primary key for a medication table. The only difference in the two relationships is the minimum cardinality. The minimum cardinality for the clinical trial testing institution entity to Trial entity relationship is zero. This means that a clinical trial testing institution may not be related to a trial. This makes sense and is probably due to the fact that a user stated that they wanted to keep institution information in the database even if it were not at all times performing a drug trial. Why have to have the user re-enter the institution data in the future when the institution is once again involved in a drug trial? The other relationship between medication and trial entities has a minimum cardinality of one. A medication must have a trial. This means that if all medication trails are finished then it has to be removed from the medication entity. If this has not been confirmed with the users then it ought to be brought up at the next meeting. Maybe this is what they want, but if they decide to keep the medication trial data in the database then this could easily be changed to a minimum cardinality of zero and would be carried out in the database by overriding the referential integrity constraint.

Slide 16

The third normal form eliminates deletion and insertion anomalies that arise from having attributes in the entity that are indirectly dependent on the key. These attributes are directly dependent on an attribute that in turn is dependent on the key. This situation is called a transitive dependency. In a deletion operation you would be deleting data in the transitive dependency along with the deletion of data that is directly dependent on the key. The transitive dependency data might be data that the user wants to keep.

Slide 17

In summary then an entity is in third normal form if it doesn't have any transitive dependencies.

It is assumed that if an entity is in third normal form that it is also in first and second normal forms.

Most databases in existence today that have been put through the normalization process are in third form. They are not in a higher level form. One reason for this is that anomalies addressed in normal forms above third normal form are rare. Another reason is that data retrieval speed from a database can actually be decreased by placing a database in a higher form. Database Administrators have to weigh all factors when normalizing a database. The most common complaint from users is about slow access speed. Often DBAs have to improve speed through trial and error testing. One option is to partially de-normalize a portion of the database and test it to see if there is any access speed improvement.

Slide 18

The small drug trial database is not in third normal form because of a transitive dependency with Drug DeliveryCode. Drug Delivery method is dependent on drug delivery code. Drug delivery code is directly dependent on Drug name, but Drug delivery method is only indirectly dependent on drug name. The way to solve this transitive dependency is to split the table and create a new table to hold the drug delivery code and the drug delivery method.

Slide 19

Here we have the small drug trial database in third normal form. The transitive dependency attributes have been separated out into their own entity called Delivery. Delivery has a one-to-many relationship with medication. This means that a delivery method may be shared by many different drugs. One only has to think of swallowing a pill to see that this should have a maximum cardinality of many. The minimum cardinality is zero. This means that a delivery method at any given time may not be associated with any medication in the medication entity. This may seem unlikely but if it should occur the users do not want to have the delivery method deleted from the database.

Slide 20

Since higher forms above third normal form are rare we will not go into as much detail for them. We will also not put our small example drug trial database into these higher forms.

DBAs typically resort to these higher forms when a problem occurs that they think the higher forms might fix. Normalization above third normal form can result in decreasing response time, but it can also increase response time. So when a slow response time has been identified, placing the section of the database involved in a higher normalization form is worth a try. Also, it is worth a try to de-normalize the same section of the database, perhaps taking it from third to second normal form.

Boyce-Codd is the next normal form and is related to some extent to third normal form. A determinant attribute that determines another attribute must be a candidate key.

Slide 21

The next higher form is fourth normal form. It involves a multi-value dependency and fixes an update anomaly. There must be a minimum of three attributes and two of those attributes must be multi-valued. This means that the values in the attributes must repeat so that the values are not unique within the attribute. The two multi-valued attributes must be dependent on the third attribute. This situation is extremely rare. The entity can be split eliminating the multi-value dependency to address the update anomaly.

Slide 22

As we proceed to higher and higher levels of normalization the chance of the situations occurring that are addressed by the levels becomes more and more rare. So, fifth normal form is hardly ever dealt with. This level involves a generalization of the multi-valued dependency addressed in fourth normal form. It is not only almost unheard of, but the resolution is very difficult to deal with.

Finally Domain key normal form or DKNF in a way is simply stating a way to know if all the other forms have been met. The only problem is that it doesn't offer a process to resolve problems like the normalization process that we have just completed.

Slide 23

The data model in the early stages helps clarify what is needed in the database and over time provides a logical structure for the database that can provide all the data that all the users need. In the beginning therefore it is necessarily unproven, probably inaccurate and its life is extremely volatile as more and more information is gathered about the database specifications. Eventually however the data model becomes less volatile and fewer surprises are encountered with additional of information. When the data model reaches the last stage of life it is transformed into the database design. Entities in the model become tables in the design, relationships, if they already do not indicate minimum and maximum cardinality, the cardinality will be shown in the design, primary keys are chosen and foreign keys are placed so as to carry out the relationships between tables.

Slide 24

Here is the final design of our small 4-table drug trial database. Primary keys are indicated with "PK" and foreign keys with "FK". Notice that there is only one primary key indicated for each table. Also notice that the foreign keys have been placed in those tables that have relationships with parent tables. The trial table has two relationships and in both it is the child of the relationship. Thus it has two foreign keys, DrugnameFK and InstNameFK. The Delivery table is the parent in the relationship it has with the medication table so drug delivery code appears in the child table medication as a foreign key.

Component 4/Unit 6d
Health IT Workforce Curriculum
2

Version 1.0/Fall 2010

