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In this segment we’ll talk about diagnosis. In particular we’ll look at the effectiveness of diagnostic tests.
How can we use evidence based medicine to assess questions about diagnosis?  If we look at the diagnostic process, the process of evaluating a patient and coming up with a diagnosis, we see that the process evolves both logical reasoning and pattern recognition.  Logical reasoning is the ability to put together different symptoms to rule things in, to rule things out based on their frequency.  Pattern recognition gives us this larger ability to look at the patterns that we commonly see in various diseases.
The diagnostic process actually has 2 essential steps.  We’ll focus mostly on the second, but before we can begin talking about diagnostic tests, we have to enumerate all the diagnostic possibilities and estimate their likelihood.  Decision support systems like QMR and Dxplain generate a differential diagnosis, not only of the possibilities but what the likelihood of each possibility is.
The second step then is to incorporate new information from diagnostic tests that helps us change our probabilities for the different items of the differential diagnosis. We can rule out some possibilities and choose the most likely diagnosis.  In this segment we’ll also talk about two variants on diagnosis.  One is screening, which is the use of diagnostic tests to screen people who are healthy in an attempt to intervene early and alter the disease process.  Then we talk about clinical prediction rules, where we actually take many pieces of information including diagnostic tests to try to predict the presence or absence of the disease.  
When we talk about diagnosis, we usually talk about the certainty or perhaps the uncertainty of the diagnosis.  We typically express that certainty or uncertainty as probabilities.  There turns out to be the involvement of mathematics which sometimes seem to be daunting, particularly to those who have not been exposed to probability or diagnostic decision making.  The math is actually not that complicated but probably even more important is to understand the concepts behind the math.  When we talk about probabilities, we talk about them on a scale from 0-1 which of course corresponds from 0%-100%.  For example, when we flip a coin, if it’s a fair coin, the probability of getting heads is .5 or 50%. The same is for the probability of getting tails if it’s a fair coin.  An alternative expression of probabilities is to talk about the odds.  I present this because we actually use the odds when we do the simple form of Bayes’ Theorem.  The odds are the probability of an event occurring vs. the probability of an event not occurring—it’s the ratio.  The odds of getting a heads on a coin flip is 1:1 as we sometimes call it, or 1 is another way to say it.  When we roll a single die and we assume it’s fair, there’s any of the 6 possibilities on the sides of the die, so the probability of getting any number is 1/6 or one-sixth; the odds of getting any one number are 1:5.  
Some other principles when we talk about probabilities are that the sum of all probabilities should equal 1, so with a coin flip the probability of head and probability or tails is each .5 - that adds up to 1.  Same thing would happen with rolling a die or other kinds of things we measure probabilities of.  When we calculate the probability of a disease with information from a diagnostic test we use Bayes’ Theorem.  Bayes’ Theorem is really a statistical formula that gives us the post-test probability, sometimes called the posterior probability.  It gives us the post-test probability of, in this case a disease being present.  Bayes’ Theorem is used for things other than medical diagnosis.  That post-test probability is a function of both the pre-test probability and the results of the test.  Bayes’ Theorem tells us that it’s important what the prior or pretest probability is.  That information is actually used to get the new probability when we add the results of the test.  Then again, I’ll show an example of that.  The post-test probability will increase when we get a positive test and decrease with a negative test, but won’t necessarily go to a 100% through 0% with a positive or negative test.  I think that’s the key conceptual part of Bayes’ Theorem that it gives us an improved probability estimate, but doesn’t necessarily tell us that the patient has a disease with 0 or 100% certainty.

Also related to diagnostic testing is this figure that comes from Guyatt’s evidence-based medicine textbooks.  I actually think this is a telling figure, which is why I’m showing it to you.  Basically, there is anywhere from a 0 to 100% chance that a patient has a disease.  Although we typically don’t quantify this in routine medical practice, there is actually a threshold where we decide to test the patient for a disease and then there is a threshold where we decide to treat them.  Below the test threshold, we think the disease is so unlikely or perhaps so unimportant that no testing is warranted.  At some point we reach the threshold where we say, “we should really get a test to see if the patient has this disease.” So, our probability estimate tells us that further testing in required when we exceed the test threshold.  Eventually, we reach a point, and it may not be 100%, where we are highly certain that the disease is present so we go ahead and treat the patient.  We cross over the treatment threshold because the probability that they have the disease is so high that it leads us to do that.  This is different for different diseases and probably the treatment threshold depends on both the benefit and the risk of the treatment.  If the treatment has high benefit if it’s a serious disease that has relatively low risk, the treatment threshold may actually be lower than if it’s a treatment that potentially has a lot of adverse effects and so forth.
Let’s look at using evidence-based medicine to assess questions about diagnostic tests.  We’ll talk a little bit about the diagnostic value of a test and then we’ll explain the single test version of Bayes’ Theorem, the simplest version, and show an example.  Then we’ll also talk a little bit about screening tests.  
To assess the value of a diagnostic test, we have to figure out how often it works, how often it’s correct.  What we typically do is have a test that we give to a patient, and when we’re assessing the diagnostic value, we have some gold standard.  We know that the gold standard is not always truly gold; sometimes it’s silver, sometimes it’s even bronze.  But, we have some standard against which we compare the test.  For virtually all medical tests, the correspondence with the gold standard is not 100%.  We have different situations; we have a true positive situation where the test is positive and it’s truly positive because the disease is positive.  Sometimes the test is negative but the patient still has the disease – that’s a false negative.  Sometimes the test is positive but the patient actually doesn’t have the disease – that’s a false positive.  Then sometimes we have the test being negative and the disease not being present and that’s a true negative.  Then we can calculate out the column and row totals of all patients with the disease, all patients without the disease, all patients with a positive test, and all patients with a negative test.  Then we can also add up the total number of patients.  It’s important to understand what these different cells are; true positive, false positive, false negative, true negative.  When we have the numbers from the table in the last slide we can then calculate the famous, or some might say, infamous values of sensitivity and specificity.
These are essential measures of the diagnostic value of a test.  Let’s go into them in detail.  Sensitivity is also known as the true positive rate, so that is the proportion of patients with a disease who have a positive test.  The true positive rate is the true positives divided by all of those with the disease, including the true positives plus the false negatives.  The false negatives being people who have the disease but the test did not pick it up.  There are various acronyms out there to help us remember sensitivity and specificity.  Two of them to remember for sensitivity are positivity in a disease, so a test having positivity in disease, PID, or another acronym is SNOUT, that is sensitivity is good at ruling out disease because someone who has a disease and then has a test given to them that has a high sensitivity should have a very high likelihood of having the disease if they have a positive test.  If they have a negative test, then that can sometimes be very effective at ruling out disease.  
Specificity is the true negative rate, so the proportion of patients without the disease who have a negative test.  The true negative rate is the true negatives divided by the sum of the true negatives plus the false positives, the false positives being those who don’t have the disease but had a positive test.  One of the acronyms to remember specificity is negativity in health, or we want to see a negative test in health or the absence of disease and specificity is better at ruling in disease.  The acronym for that is SPIN and again the notion is that if someone has the disease and the test is very highly specific, then it’s highly likely to be positive when they actually have the disease, so a positive test for a highly specific test is very effective at ruling in the disease. 
There are other statistics that we need to calculate disease probability.  There are a lot of concepts here, a lot of math.  You may want to turn the lecture off and think about these things; let them sink in and maybe listen again.  Go look at an EBM textbook because these are described there.  One statistic that is helpful to know is prevalence.  The prevalence of a disease is the proportion of people who have the disease, the total number of patients with the disease divided by the total number of patients.  This is really a term from epidemiology that is used in diagnostic test calculations.  Prevalence is the true positives plus the false negatives divided by the total number of patients:  true positives, false negatives, false positives, true negatives.  Prevalence can be a good starting point for the pretest probability of disease.  When we use the Bayesian formula to calculate the probability of disease based on a test, then we need the pretest probability, what the probability is before we do the test, the prevalence of disease can be a good estimate as a starting point.  We then need to calculate two other values to use the Bayesian formula which are the likelihood ratio positive and negative.  The likelihood ratio positive measures how many times more likely the test is positive in disease.  Perhaps you don’t need to dwell into it conceptually, but the likelihood ratio positive is sensitivity divided by 1 minus specificity.  The higher the likelihood ratio, the better the test is at increasing the post-test probability from a positive test.  Again, it’s the true positive rate divided by the false positive rate.  The likelihood ratio negative measures how many more times likely the test is negative in health and the likelihood ratio negative is used when the test is negative and the vast likelihood ratio negative is one that diminishes as much as possible the probability of disease with a negative test.  We’ll see how these are actually used in the Bayesian formula.  
How do we use Bayes’ Theorem?  First we need the pretest probability.  We can take that from the prevalence, we can have some other estimate or known risk of the disease in this population—that’s our pretest probability.  We then convert the pretest probability to pretest odds and we do that by taking the pretest probability divided by 1 minus the pretest probability.  We then calculate the post-test odds by simply multiplying by the likelihood ratio, positive or negative depending on whether we get a positive or negative test, and then we convert the odds back to probability and that’s done by taking the post-test odds divided by 1 plus the post-test odds.  There actually are other ways to calculate Bayes’ Theorem.  They are a lot more complicated mathematically.  This is the simplest way to do it, which is why we use odds and likelihood ratios.
Before we look at an example, let me also introduce a couple other statistics that do occasionally have some importance in assessing diagnostic tests.  These are the predictive values of tests.  The predictive value positive is the proportion of people with a positive test who end up having the disease.  It is kind of sensitivity turned inside out.  Sensitivity is the proportion of people with the disease who have a positive test.  Predictive value positive is the proportion of people with a positive test who have the disease.  Likewise, predictive value negative is the proportion with a negative test who don’t have the disease.  

Just as there were limitations of randomized controlled trials, there are also limitations with issues with regard to diagnostic tests.  There are many real and potential sources of bias in diagnostic tests, and this paper assessed all the ways that diagnostic tests can be biased; in how they’re done, how they’re analyzed and so forth.  Another important point is that diagnostic tests while they improve our probability estimations, there’s also still the element of judgment as there is in any type of evidence based medicine, but we still have to apply our medical knowledge, our judgment when we come up with these numbers, these probabilities with diagnostic tests.  The results of Bayes’ Theorem can be influenced by the pretest probability that may be incorrect; we may estimate it too high or too low.  That’s an issue.  Then there are a number of theoretical issues which I really don’t want to go into in great detail.  The book describes them a little bit and the statistical literature describes them at great length, but Bayes’ Theorem actually assumes that there’s’ conditional independence of the data.  That means that there’s no dependence between one data element and another.  Well, it turns out that clinicians have multiple pieces of evidence and multiple tests and if we try to take all this into account it can make the complications very complex.  There’s actually ways to calculate Bayes’ Theorem for multiple pieces of information, but in reality, these multiple pieces of evidence start to violate the assumptions of independence.  In a patient who has cough, fever, and elevated white blood cell count, and you’re trying to come up with some Bayesian estimate of the probability, those finding are actually not independent, they’re all related to the underlying condition.  
Perhaps Bayes’ Theorem and its application can be best understood if we look at an example.  This was a study done that looked at the ability of different kinds of tests to identify polyps in the colon that were greater than 6 mm in size.  This particular study looked at patients who are at high risk for colon cancer because either a close relative had it or they have had it previously.  How good are the different types of tests we can use to detect polyps?  One common way is an air-contrast barium enema where we put barium in the colon and then we take x-ray pictures to see if we can identify polyps.  Another type of test is a newer test that uses a CT scan, a computerized colonic tomography.  Then, of course, what is close to the gold standard is a colonoscopy.  You can see I’ve actually taken the sensitivity and specificity as they were actually calculated from the articles, so we won’t go through the exercise of putting the numbers into the table and calculating sensitivity and specificity.  I’d rather focus on the use of Bayes’ Theorem.  When we have sensitivity and specificity we can then calculate the likelihood ratios positive and negative.  As you can see, air-contrast barium enema has a relatively low sensitivity and a modest specificity compared with colonoscopy.  That is reflected in the likelihood ratios.  The number of polyps that were detected in the study that had 614 patients, the polyps occurred in 155 patients who had 234 lesions, almost two-thirds of which turned out to be adenomas or cancer, the ones that you definitely want to remove that are either cancerous or precancerous.  
To keep things a little simpler, let me just focus on comparing the air-contrast barium enema and colonoscopy.  The CT colonoscopy, as it is sometimes called, the virtual colonoscopy was a little better than air-contrast barium enema but not comparable to a true colonoscopy.  Again, also to keep things simple, we’ll estimate the pretest probability at .25 which is close to the prevalence in this group.  First thing we need to do is to convert that to the pretest odds, so that’s the probability divided by 1 minus the probability, so that is .33 – that’s the pretest odds.  Then what if we get a positive test?  Well, with barium enema, if we get a positive test, we multiply the pretest odds by the likelihood ratio positive, that’s gives us post-test odds of .75.  We then convert that back to probability, so to get from odds to probability, we take the odds divided by 1 plus the odds .75/1.75 or .43, so if there’s a positive test, we now have a 43% likelihood of the patient having a colonic polyp.  As you can see, the probability of disease in this case, the probability of having a polyp only went up a modest amount from 25% to 43%, but with colonoscopy and its likelihood ratio of 248, the post-test odds went up to 81.8 and the post-test probability was 99%.  Colonoscopy is a much more effective test for improving the probability of disease, in this case, the probability of a polyp being found because it has a much higher likelihood ratio.
What about when we get a negative test?  Let’s look at the results.  Remember that we use the likelihood ratio negative for when we get a negative test.  For air-contrast barium enema, we multiply the pretest odds of .33 times the likelihood ratio negative because we have a negative test, this gives us post-test odds of .24 and then converting back to probability, we take .24 divided by 1.24 and that gives us .19 or 19%.  With the negative test the probability of colon cancer is reduced from the pretest probability of 25% down to 19%.  As you can see, that’s still fairly significant.  We may not feel comfortable with the results of air-contrast barium enema alone.  For colonoscopy, we take the pretest odds, .33, and if we have a negative test multiply by the likelihood ratio negative which is .01.  That gives us a post-test odds of .0033 and then converting that to post-test probability .0033 divided by 1.0033 gives us a post-test probability of .0033 or .3%.  As you can see, with colonoscopy the much lower likelihood ratio negative and the presence of a negative test gives us a much more comforting post-test probability.  
Let me finish the discussion with a discussion of screening.  We talked a little bit about screening in segment 6.2 with regards to prostate cancer.  Screening is the identification of unrecognized disease.  What we hope to do with screening is recognize disease so we can intervene at an earlier stage.  We may aim to keep the disease or its complications from occurring, that’s sometimes called primary prevention or we want to prevent complications developing when the disease has already happened, that is sometimes called secondary prevention.  What are the attributes of a good screening test?  One is it should have low cost because we typically apply screening to large numbers of people and if it’s substantially expensive when you multiply that out by those large numbers of people, the cost can get substantial.  There has to be an effective intervention, and that’s always been the issue with prostate cancer screening whether we have an effective intervention for prostate cancer.  Finally, the test should be of high sensitivity.  Why high sensitivity?  Well, it’s important that a screening test not miss any cases and so sometimes a test will have a trade off.  It may have a high sensitivity, but a lower specificity or vice versa.  We want a high sensitivity because we don’t want to miss any cases.  Then we can actually followup with tests of higher specificity.  That’s what’s done when we’re screening for HIV.  The initial test is highly sensitive and in the process we uncover some false positives.  We then us a more specific test that tells us whether some of those false positives are indeed truly falsely positive.  What we don’t want to miss in screening, or what we don’t want to have happen, is a false negative because then the patient won’t be followed up and the screening will have missed the condition that we’re screening for.  

As you know, Americans and probably people from elsewhere in the world, but particularly Americans, love screening tests despite the fact that there’s a lack of evidence for them.  They’re willing to have these tests done despite many medical professionals knowing better that the tests themselves may not be good or that there may not be a good treatment for the cancer if it’s detected early as we saw in the last segment about prostate cancer screening.  A key problem with screening tests is that the cost of false positive tests is substantial.  There was one study that looked at screening for four types of cancer that’s commonly done:  prostate, lung, colorectal, and ovarian, and found that 43% of people had at least 1 false positive test within their screening.  That false positive test led to increased medical spending in the following year by over $1000.  There are also some specific examples despite the lack of evidence for the benefit of a Pap smear in women who have had a hysterectomy, so no cervix which is what the Pap smear screens, the procedure is still widely done by physicians.  Physicians also subject people to annual physical exams, the whole complete history and physical, despite the lack of evidence that much can be found.  This doesn’t mean that certain screening items are not beneficial, but the whole nine yards, the whole annual physical exam really does not have much evidence to support its value, but two-thirds of physicians still believe it is necessary and perhaps there might be some economic incentive for that belief.  

Let’s finish up this segment with some discussion about clinical prediction rules.  We’re not going to go into any great detail on these, but certainly many of you who are regular readers of the medical literature have probably seen papers where they’re used.  The idea behind clinical prediction rules is that we use results from multiple tests, and I puts tests in quotes here, because the information in clinical prediction rules is not only things like blood tests and x-rays, but also the presence of certain clinical findings, signs, symptoms, etc.  We use all these different pieces of data to predict the diagnosis.  There are rules for critically appraising clinical prediction rule studies and, in essence, the best evidence for clinical prediction rules will establish the rule in one population and then validate it in another independent one. 
Just to give you an example of a clinical prediction rule, something that’s very important clinically because there are not diagnostic tests that are absolutely definitive, is the prediction of deep venous thrombosis, DVT, a blood clot in the deep veins of the lower extremities, which as all clinicians know it puts the patient at risk for the clot breaking off and causing a pulmonary embolism which can be serious if not fatal.  Unfortunately, we don’t have any tests that are both highly sensitive and specific for DVT and so it’s helpful to try to develop clinical prediction rules that give us confidence in the diagnosis or ruling out the diagnosis when we’re seeing a patient who might have it.  The prediction rule for deep venous thrombosis that Wells and colleagues have developed has high sensitivity but moderate specificity, but that’s probably helpful because having high sensitivity it’s good at ruling out disease, more so than ruling in and something as serious as DVT that can predispose to pulmonary embolism, it’s probably more important to be confident that we ruled out the disease rather than ruling it in.  
There are many, many other areas where clinical prediction rules have been applied.  Predicting things like coronary artery disease and this interesting recent study looked at all the different so-called markers that have been proposed for coronary artery disease in recent years and found that none of them really adds more than the basic risk factors that we have of cholesterol, family history, hypertension, diabetes, etc.  We can use the techniques of clinical prediction rules to evaluate new markers for disease as they’re developed.
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