Clinical Decision Support Reminders and Alerts

Component 11 / Unit 3

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Modern approaches to clinical decision support (CDS)

- Take advantage of the context of the electronic health record (EHR)
- Reminders remind clinicians to perform various actions
- Alerts alert clinicians to critical situations
- Computerized provider order entry (CPOE) covered in next segment
- Clinical practice guidelines

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Taxonomy of CDS (Wright, 2007)

- Triggers event causing rules to be invoked
 - e.g., order entered, lab result stored, admission
- Input data data elements used by rules
 - $-\,$ e.g., lab result, observation, drug, diagnosis, age
- Interventions possible actions CDS can take
 - Dimensions of notification urgent vs. non-urgent, synchronous vs. asynchronous
 - e.g., notify, log, show information, obtain data
- Offered choices actions offered to user
 - e.g., write order, defer, override, cancel or edit order

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

Evolution of CDS

- Phases (Wright, 2008)
 - Standalone systems e.g., MYCIN, QMR
 - Integrated systems e.g., WizOrder, CPRS
 - Standards-based systems e.g., Adren Syntax
 - Service models e.g., SANDS (Wright, 2008)
- Evaluation of 9 leading commercial systems show diversity of desired features (Wright, 2009)

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Computer-based reminders are not a new idea

- McDonald, 1976
 - Computer-based reminders show some reduction in error but humans are "non-perfectable"
- Barnett, 1978
 - Small number of cases of untreated Streptococcal pharyngitis progress to acute rheumatic fever
 - Reminders to follow up led to increased treatment
- McDonald, 1984
 - Paper printout of reminders to order routine preventive care resulted in increased utilization
- Consistent findings from these results
 - Behavior returned to baseline when reminders removed
 - Effects were not educational

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

Barnett effect of starting and stopping of reminders (1978)

Component 11 / Unit 3

Health IT Workforce Curriculum Versi 1.0 /Fall 2010

Reminders have been shown efficacious for many uses

- Reduced ordering of redundant laboratory tests (Bates, 1999)
- Systematic review of effect in medication management (Bennett, 2003) found
 - Appropriate changes in class of medications prescribed
 - Increased generic prescribing
 - Improved activities related to medication management (e.g., diagnostic testing)
 - Enhanced patient adherence to medication regimens
 - Reminders (prospective) appear to be more effective than feedback (retrospective)

Component 11 / Unit 3

Health IT Workforce Curriculum Versio

Reminders (cont.)

- Increased delivery of recommended care in patients with diabetes and coronary artery disease (Sequist, 2005)
- Reminder for deep venous thrombosis (DVT) prophylaxis reduced rates of DVT or pulmonary embolism by 41% (Kucher, 2005, including Paterno)
- Completion of reminders was related to incorporation of clinical support staff in processes and feedback to clinicians but not any other clinician characteristics (Mayo-Smith, 2006)

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Alerts

- Usually used to detect and report adverse events
- Often used in context of CPOE (covered in next segment)
- Successfully used in many clinical situations (Bates, 2003)
 - Nosocomial infections
 - Adverse drug events
 - Injurious falls
 - Emergent diseases, e.g., bioterrorism

Component 11 / Unit 3

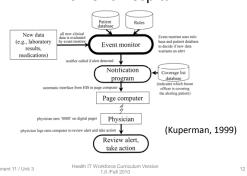
Health IT Workforce Curriculum Version 1.0 /Fall 2010

Rationales for alerting systems

- Bates, 1994
 - Appropriate response to critical lab results might prevent 4.1% of adverse events
 - Another 5.5% might be prevented by improved communication of lab results
- Tate, 1990
- Only 50% of "life-threatening" lab results responded to appropriately
- Kuperman, 1998
 - In critical lab results, 27% do not receive treatment within five hours
- Poon, 2004
 - Dissatisfaction with current reporting of test results, with desire for help with tracking results to completion, sending letters to patients, and improving workflow efficiency

Component 11 / Unit 3

Alerts usually generated by clinical event monitors


- Clinical event monitors (Hripcsak, 1996)
 - Detect events and suggest actions based on them
 - Allow integration of decision support with the EHR
- Components of clinical event monitors
 - Event triggers a rule to fire, e.g., hemoglobin test
 - Condition tests whether an action should be performed, e.g., is patient anemic?
 - Action inform clinician, usually in form of a message
- Data recency and validity key, e.g., hemolyzed potassium specimen

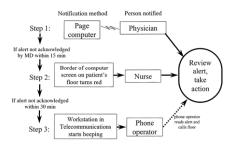
Component 11 / Unit 3

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

Alerting system at Brigham and Women's Hospital

Examples of alerting criteria (Kuperman, 1999)


- Hematocrit has fallen 10% or more since last result and is now less than 26% (19.8%)
- Hematocrit has fallen 6% or more since previous result, and has fallen faster than 0.4% per hour since last result, and is now less than 26% and the patient is not on the cardiac surgery service (16.7%)
- Serum glucose is greater than or equal to 400 mg/dL (17.7%)
- Serum potassium is greater than or equal to 6.0 mEq/dL (16.7%)

Component 11 / Unit 3

Health IT Workforce Curriculum Versi

13

"Failsafe" sequence for notification

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

Efficacy of notification for alerts

- Kuperman, 1999 compared to situations with no automatic notification, intervention resulted in
 - 38% percent shorter median time interval until appropriate treatment ordered (1.0 hours vs. 1.6 hours)
 - Shorter time until alerting condition resolved (median, 8.4 hours vs. 8.9 hours)
 - No difference in number of actual adverse events
- Kac, 2007 alerts for multidrug-resistant bacteria in a hospital found to increase implementation of isolation precautions

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

15

Issues concerning alerts

- How to deliver to clinician?
 - Pager? Phone call? Email?
- Volume control, aka "alert fatigue"
- Want to communicate but not overload
- Medicolegal issues
 - What to do about clinicians who do not respond to alerts or when alerts not appropriately generated
- How to detect?
 - Easier with coded or numeric data; harder for information in textual reports (Cao, 2003; Melton, 2005)
- How to standardize alerts across different systems
 - Arden Syntax

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

40

Arden Syntax (Hripcsak, 1994)

- Procedural language for delivering Medical Logic Modules (MLMs)
- Allows sharing of decision support rules across systems (if decision support implemented by EHR system)
- Specifies event, condition, and action
- Now a standard: ASTM E1460
 - Recently converted to XML (Kim, 2008)

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Arden syntax example

penicillin_order :=
 event {medication_order
 where class = penicillin};
/* find allergies */
penicillin_allergy :=
 read last {allergy
 where agent_class = penicillin};
;;
evoke: penicillin_order ;;
logic:
If exist (penicillin_allergy) then conclude true;
endif;
;;
action:

write

"Caution, the patient has the following allergy to penicillin documented:" || penicillin_allergy ;;

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010