Clinical Decision Support Historical Perspectives - 1

Component 11 / Unit 3

Component 11 / Unit 3

CDS: historical perspectives

- Early approaches focused on application of artificial intelligence and expert systems to improve medical diagnosis
- Diagnostic decision support was a major focus of the field in the early days, circa 1970s and 1980s

 But computer-aided diagnosis proved difficult and it became apparent computers could better be used in more focused capacities to reduce errors and improve quality
- Laid the intellectual groundwork for techniques used in modern CDS and shift of focus to therapeutic decision support
- With the availability of data in the modern electronic health record (EHR), the older approaches may yet be useful in the future

Component 11 / Unit 3

Health IT Workforce Curriculum Versio 1.0 /Fall 2010

Let's define some terms

- Artificial intelligence (AI) the area of computer science concerned with building computer programs that exhibit characteristics associated with human intelligence
- Expert system (ES) a computer program that mimics human
- Decision support system (DSS) also mimics human expertise but acts in more of a supportive than independent role
 - Diagnostic decision support focused on aiding in diagnosis of
 - Therapeutic decision support focused on aiding in treatment of patients

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

•		
•		
•		
,		

Early efforts arose out of attempts to "quantify" medical diagnosis

- Ledley and Lusted (1959, 1960) proposed mathematical model for diagnosis
 - Clinical findings based on set theory and symbolic logic, with diagnosis made using probabilities
- Warner (1961) developed a mathematical model for diagnosing congenital heart disease
 - Approach used contingency table with diagnoses as rows and symptoms as columns
 - System predicted diagnosis with the highest conditional probability given a set of symptoms

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Approaches to diagnostic ESs

- Functions of systems tightly linked to methods for knowledge representation
- Four general approaches
 - Clinical algorithms
 - Bayesian statistics
 - Production rules
 - Scoring and heuristics
- Current approaches taken advantage of modern EHRs and other advances

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Clinical algorithms

- Follow path through "flow chart"
- Elements in chart are nodes
 - Data is gathered at information nodes
 - Decisions are made at decision nodes

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

2

Clinical algorithms (cont.)

- Benefits
 - Knowledge is explicit
 - Knowledge is easy to encode
- Limitations
 - No accounting for prior results
 - Inability to pursue new etiologies, treatments, etc.
 - New knowledge difficult to generate
- Forerunner of modern clinical practice guidelines

Component 11 / Unit 3

Health IT Workforce Curriculum Version

Bayesian statistics

- Based on Bayes' theorem, which calculates probability based on prior probability and new information
- Assumptions of Bayes' theorem
 - Conditional independence of findings no relationship between different findings for a given disease
 - Mutual exclusivity of conditions more than one disease does not occur

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

Bayes' Theorem generalized form

• Probability of disease i in the face of evidence E, out of a set of possible j diseases is:

 $P(Di)\;P(E\,|\,Di)$

P(Di|E) =

ΣP(Dj) P(E|Dj)

- Translation of formula: the probability of a disease given one or more findings can be calculated from
 - The prior probability of the disease
 - The probability of findings occurring in the disease

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

•		
•		
•		
•		
•		
•		
•		

Implementation and limitations of Bayesian approach

- Leeds Abdominal Pain System (de Dombal, 1975)
 - Most successful implementation, used in diagnosis of acute abdominal pain
 - Performed better than physicians accuracy 92% vs. clinicians 65-80%, better in 6 of 7 disease categories
 - But difficult to use and not transportable to other locations (Berg, 1997)
- Limitations of Bayesian statistics
 - Findings in a disease are usually not conditionally independent
 - Diseases themselves may not be mutually exclusive
 - When multiple findings important in diagnosis, reaches high computational complexity quickly

Component 11 / Unit 3

Health IT Workforce Curriculum Version

10

Production rules

- Knowledge encoded as IF-THEN rules
- System combines evidence from different rules to arrive at a diagnosis
- Two types of rule-based ESs:
 - Backward chaining System pursues goal and ask questions to reach goal
 - Forward chaining Similar to clinical algorithms, with computer following proscribed path to reach answer
- Generic rule: IF test-X shows result-Y THEN conclude Z (with certainty p)

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

Jium version

The first rule-based ES in medicine: MYCIN

- PhD dissertation of Shortliffe (1975) and one of the first applications in medical informatics
- Major features
 - Diagnosed the infectious diseases, meningitis and bacteremia
 - Used backward chaining approach
 - Asked questions (relentlessly!) in an attempt to reach diagnosis
- Evaluation of MYCIN (Yu, 1979)
 - 10 cases of meningitis assessed by physician experts and MYCIN; output judged by other physician experts
 - Recommendations of experienced physicians judged acceptable 43-63% of the time, compared with 65% of the time for MYCIN
 - In no cases did MYCIN fail to recommend an antibiotic that would cover the infection (even if it was not optimal choice)

Component 11 / Unit 3

Health IT Workforce Curriculum Version 1.0 /Fall 2010

12

_	

Limitations of rule-based systems

- Depth-first searching could lead to focus in wrong area
- Rule bases were large and difficult to maintain
 - MYCIN had 400 rules covering two types of bacterial infection
 - Approach worked better in constrained domains, such as pulmonary function test interpretation
- Systems were slow and time-consuming to use
 - Rule-based goal seeking could take long time
 - System also developed prior to era of modern computers and graphical user interfaces

Compo			6.1.1.2	_
Compo	nent	11	/ Unit	J

Health IT Workforce Curriculum Version

13