
Component 4/Unit 9-5
Audio Transcript
Slide 1
Welcome to Component 4, Introduction to Information and Computer science. This is the fifth lecture of Unit 9: The Components and Development of Large Scale Systems.
Slide 2
The systems development process is a set of activities, methods, best practices, deliverables and automated tools used by stakeholders to develop and continuously improve information systems and software.
In this lecture we will cover Testing, which is a crucial part of the Systems Development Lifecycle, or SDLC. Although testing occurs throughout SDLC, it is most visible during the Systems Design and Systems Implementation phases.

Slide 3
Testing guarantees that a program or system meets all of its requirements for all users in all environments. You can think of it as an activity performed with the intent of finding errors, defects, and/ or missing pieces. Testers verify and validate to determine whether a product works or not.

All languages have rules regarding spelling, sentence structure and punctuation. Consider these rules the syntax of the language which are critical for communication. Syntax errors are computer language grammar errors and are found when the code is compiled. Source code is the programming language written and understood by a person, the programmer. Object code is the computer or machine readable language. Computer compilers are programs that translate or transform source code into object code. The program cannot and will not run until syntax errors are corrected and the program compiles successfully.

Just because a program is syntactically correct and therefore can execute, does not mean it is logically correct. Logic errors happen when the program compiles as expected but runs in an unexpected way. The computer does not do what it is supposed to do because of the way the program was designed and/ or written. Logic errors cause incorrect results that are found by desk checking, structured walkthroughs and/ or code review.

The test plan is a document that spells out the strategy required to evaluate the system or product. It includes where the test data is located as well as what tests are to be performed. To generate a worthwhile set of test cases, the test designers must be certain that their suite of data and situations covers all the functionality of the system and that the testing fully exercises the GUI [goo-ee], or graphical user interface. Test data contains both good and bad data and needs to test all possible situations that might occur. Often test data is a subset or snapshot of production data. Testing is performed in an environment separate and isolated from the production setting.
Slide 4
The testing process can be summarized as follows: 1) create the test plan, 2) determine test cases and set up test data for input, 3) execute the test cases which includes the building of a testing environment, automation of the execution of test cases and creation of scripts to run the tests, 4) fix the bugs if any, and 5) retest the code and repeat as necessary.
Testers usually try to "break the system" by entering data or performing actions that causes the system to malfunction or return incorrect information. For example, a tester may enter a city in a search box designed to accept only states just to see what happens.
Slide 5
Good testing includes the creation of a test plan to ensure all situations have been tested, successful conditions are seen and all problems corrected. This slide shows a list of some of the items often included in a test plan. Testing is considered part art/ part science and, when done correctly, is a big part of systems implementation. Testing can uncover problems before, during and after the systems lifecycle. It will also reduce downtime and limit user frustration after deployment.
Slide 6
A test case is a formal or informal set of conditions or variables under which a tester can identify issues and determine if the application or software system is working correctly.
A formal test case ensures that an application requirement is met. Each requirement has at least two test cases: a positive and a negative test. A traceability matrix connects the test case with its related requirement. Formal test cases are documented with details about the functionality tested, any pre- and post- conditions and the input and expected output. When an application does not have formal requirements, informal test cases are used. These test cases are written for the general expected behavior of the system.
Scenario testing describes a potential situation or scenario of a system to direct a tester’s evaluation. Each step of the scenario identifies which piece of the system must be tested, along with the expected result.
Slide 7
This slide shows some of the items included in test cases and provides an indication of how comprehensive testing needs to be. Of course, different information will be collected according to the needs of the system developers. Remember that documentation is extremely important during testing. Proper documentation helps keep track of executed tests. It also helps create a knowledge base for current and future projects. Appropriate metrics and statistics can be captured to validate or verify the efficiency of the technical design or architecture.
Slide 8
A unit is the smallest piece of testable [test-uhbl] code and is tested by itself to be sure it behaves as expected. Unit testing identifies and eliminates run-time or execution errors that make the program stop abnormally and the logic errors that might not have been caught during desk checking. The main purpose of unit testing is to take the smallest piece of testable software in the application and isolate it from all other code to determine whether it acts as expected, whether its functionality meets the requirements.

Once units pass their individual tests they are integrated into modules where the interfaces between modules are tested to ensure they work together. Sub-system testing may be performed between module and system testing where the testing is on multiple modules but not the entire system. Integration or link testing comes into play right after unit testing. Two or more previously tested units are combined into a component and the interface between them is tested. More units are combined and interfaces tested until the full product is tested at once.
System testing focuses on the system as a whole and is often performed by a dedicated testing team. Think of system testing as a simulation where real life scenarios are tested to ensure all functions and features of the system will work when it finally goes live. System testing includes testing, verification and validation of both the business requirements and the application architecture. It is intended to assure users, developers, and managers that the programs meet all specifications and that all necessary features have been included. Successful completion of system testing is the key to user and management approval. This leads to user acceptance testing where the system is finally tested by the users against the requirements defined in the analysis and design phases. In this phase, corrections are made as required and without adding new functions, then the production system is implemented.
Another, less detailed testing sequence is shown at the bottom of this slide as a more continuous stream. Component testing focuses on testing units and modules and is done by the programmers to ensure individual components are working correctly. Integration testing is done against two or more programs that depend on each other. User testing is required to ensure the system is doing what it is expected to do and that the user is satisfied.

Slide 9
Performance testing puts the emphasis on the final measurable performance characteristics. Among other things, it can refer to the assessment of the performance of a human examinee. For example, a behind-the-wheel driving test is a performance test of whether a person can perform the functions of a competent driver.

Usability testing observes people using the product so as to discover flaws and areas for improvement. Usability testing generally involves measuring how well test subjects respond in four areas: efficiency, accuracy, recall, and emotional response.

Accessibility describes the degree to which a product, service, device or environment is accessible by as many people as possible, such as those with limited eyesight, dexterity, etcetera. Accessibility should not be confused with usability which describes the extent to which the system can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use. Accessibility covers the government requirements such as the Americans with Disabilities Act (ADA), Section 508 of the Rehabilitation Act and the Web Accessibility Initiative (WAI).

Slide 10
The terms on this and the next slide are by no means a comprehensive list of the kinds of testing that is done but should be an indicator that testing is and should be thoroughly performed. Each organization determines which testing is to be done and the list of tests will vary based on the system being tested.

Ad hoc testing is testing performed without planning and documentation. These on-the-fly tests are intended to be run only once unless a defect is discovered.
Compatibility testing evaluates the application's compatibility with the computing environment. It is similar to integration testing except with the outside environment.
Exploratory testing is used to find out how the software actually works, and to ask questions about how it will handle difficult and easy cases. The quality of the testing is dependent on the tester's skill of inventing test cases and finding defects.
Installation testing is a kind of quality assurance work in industry that focuses on what customers will need to do to install and set up the new system successfully.

Load testing refers to testing the system under high load conditions where there are several applications running with many network and memory demands. The load is so high that errors are expected to occur; determining the maximum load for an application without errors is part of the testing. Also, load testing helps identify bottlenecks.

Stress testing is similar to load testing, but the capacity is pushed even higher and beyond what would ever be expected for the system. Like load testing, stress testing is used to determine the breaking point of the system and observing what occurs.

Maintenance testing is performed during the maintenance phase of development which is described in lecture 6 of this unit. This type of testing can be used to identify new problems or confirm that software updates are effective.
Slide 11
Recovery testing shows how well an application is able to recover from crashes, hardware failures and other similar problems. During recovery testing, the system is deliberately caused to fail and the system is evaluated in its response to the failure.. Here is an example to try at home: in the middle of downloading a file from the internet, turn your computer off and then back on. Does the download resume or must you start over?

Reliability testing tries to discover the specific point at which failure occurs. When reliability is considered from the perspective of the consumer of a technology or service, actual reliability measures may differ dramatically from perceived reliability. A bad situation is magnified in the mind of the customer therefore inflating the perceived unreliability of the experience. One plane crash where hundreds die immediately instills fear in a large percentage of the flying population, regardless of actual reliability data about the safety of air travel.

Regression testing uncovers software errors by partially retesting a modified program. It provides a general assurance that no additional errors were introduced in the process of fixing other problems. Regression testing methods include rerunning previously run tests and checking whether previously fixed errors have re-emerged. Without regression testing it is difficult to find or see how a change in one part of the system affects other parts.

A sanity test or sanity check quickly evaluates whether a claim or the result of a calculation can possibly be true. The point is not to catch every possible error but to rule out certain classes of obviously false results. In computer science, a sanity test is a brief run-through of the functionality of a computer program, system, calculation, or other analysis, to assure that the system or methodology works as expected. This is often done prior to a more exhaustive round of testing.
Scalability testing measures the capability to scale or increase the user load, number of transactions, amount of data, etcetera. Performance, scalability and reliability are often considered together by software quality analysts.
Security testing evaluates the security measures of an information system.

The six basic concepts that need to be covered by security testing are: confidentiality, integrity, authentication, authorization, availability and non-repudiation.
Smoke testing refers to the initial tests after a repair to a system to determine if the system is repaired enough to withstand further testing.
Volume testing tests a system with a specific amount of data. The system’s functionality and performance is then evaluated.

Slide 12
Reliability theory dates back to the nineteenth century where it was used by maritime and life insurance companies to determine their rates. The basis of reliability is predicting the amount of time before an “event” occurs. This event could be failure or death, depending on the system that is being evaluated.
As an example, consider your personal computer (PC). It is working now but will it work tomorrow? Computer products, like other man-made items, are subject to issues such as obsolescence, security vulnerabilities, incompatibilities, bugs, premature failure, breakage, faulty materials. The reliability factor is the chance that your PC will become a hassle, a headache, or more trouble than you think it is worth. How do you foresee the time at which you must throw out or recycle the old and bring in the new?
Component 4/Unit 9-5
Health IT Workforce Curriculum
6

Version 2.0/Spring 2011

This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

