
Component 4/Unit 6-4
Audio Transcript
Slide 1
Welcome to Component four, Introduction to Information and Computer Science; unit six, Databases [dey-tuh-beys-es] and SQL [see-kwuhl].
Slide 2
This lecture focuses on the design of a small database, beginning with the specification gathering phase, where all of the needs of the database will be identified. From the specifications we will create an initial data model that we will improve as we progress. To enhance the logical efficiency of the model we will then implement a process called normalization followed by the identification of functional dependencies and constraints. Ultimately we will produce a database design based on the last iteration of the model, stipulating relationships and keys.

Slide 3
The database design will keep track of new medications that are in trial testing. The goal will be to keep track of medications, the trials for those medications and the clinical institutions that are performing the testing.
Slide 4
In the specification gathering phase it was noted that specific data about the trial institution needed to be kept in the database. Therefore information about the institution needs to be tracked, for example the name, contact information, and address of the institution.
Slide 5
In addition to the institution, data about medications will be kept in the database. This type of information includes the name of the medication, its creator, date of creation, its drug family, use code and a description of the medication. In addition the trial start date for the medication, the trial end date (if known), a description of the trial results and the resource for the cost of the trial will also need to be kept in the database.

Slide 6
Our first attempt at a data model for this database might look like the image on this slide. There are two entities, Clinical Trial Testing Institution and Medication. Notice that candidate keys, or CK, have been identified. In the Clinical Trial Testing Institution entity, Institution Name and Institution Contact have been identified as the candidate keys. The Drug Name and Trial Code are identified as candidate keys for the Medication entity. The relationship is a many-to-many relationship with the minimum cardinality of one in each direction. This means that a medication can have from one to many trial institutions and a trial institution can have from one to many trials. Typically the development of a data model requires numerous user meetings and may take place over a considerable amount of time, but we will shorten the process for our purposes and move on to the normalization process.

Slide 7
Normalization is a formal process to eliminate update, addition, and deletion anomalies [uh-nahm-uh-leez].
During a normalization process it is necessary to identify attributes in the entities that serve as identifiers for other attributes of the entity. When all other attributes of an entity are shown to be determined by an identifier, the identifier is a candidate key. In other words, the other attributes are said to be functionally dependent on the candidate key. Occasionally not all attributes will be functionally dependent on an identifier. These cases are addressed in the normalization process.
Constraints are a way of carrying out data rules. Making it necessary for attributes to have unique values that otherwise might not contain unique values is an example of a constraint. This is often necessary in creating a one-to-one relationship.
The referential integrity constraint ensures that a foreign key in a relationship exists as a primary key in the entity it has a relationship with. It wouldn't make much sense to have a relationship where the foreign key didn't match a primary key because data from the two tables could not be matched on values.
Slide 8
Here are some examples of functional dependencies. In the diagram, "CK" signifies that the attribute is a possible candidate key. Since we are still early in the data modeling process everything is still questionable, but it is useful to start the model to understand what we think we know. In the entity, Clinical Trial Testing Institution, two attributes have been selected as candidate keys, Institution Name and Institution Contact. It is relatively easy to see that all of the other attributes are dependent on Institution Name. It may be a little less obvious to see why the other attributes are dependent on Institution Contact—in fact, this may NOT be the case. We will know more as more information is collected from the users.
In the medication entity DrugName and TrialCode have been selected as candidate keys. All other drug attributes seem to be dependent on DrugName. Also, since there is one row in this entity for each trial, all other trial attributes are dependent on TrialCode.

Slide 9
This slide provides an example of the referential integrity constraint. The entity on the left is for all medications at a pharmacy. The entity on the right is for all medications that various patients are taking. A referential integrity constraint can be set up between patient medications and pharmacy medications such that a Medication Name in the patient medications entity must occur as a primary key in pharmacy medications. Thus MedName in patient medications is a subset of MedName in pharmacy medications. The referential integrity constraint will automatically check to make sure that when a new patient is added to the patient medications entity that it’s MedName occurs as a MedName in the pharmacy medications. If it did not occur, then the addition of the patient to the patient medications entity would be rejected. Notice the cardinality of the relationship between these two entities. A patient row in Patient medications is related to one and only one pharmacy medication. In other words, a patient medication must be related to one pharmacy medication and the minimum cardinality is one, not zero. This illustrates the referential integrity constraint.

Slide 10
Now we are ready to begin the normalization process for our small drug trial database. There are a number of levels in the normalization process. The first level is called the first normal form or 1NF [one-en-ef]. For a database to be in first normal form it has to adhere to the definition of a relation. In order to be a relation, an entity must have all its attributes belong to the entity. You can't have data about a patient and data about the cost of a medical process in the same entity. You can think of this as mixing apples and oranges. Also to be a relation each attribute must be uniquely named and must only contain one piece of data. Composite attributes are not allowed. The sequence of rows and columns in a relation is not important.

Slide 11
In examining our small drug trial database, the only thing that is in violation of it fitting the definition of a relation is that the Institution Address attribute of the clinical trail testing institution entity is a composite attribute made up of the Institution Street, City, State, and Zip.

Slide 12
This slide depicts our small drug trial database in first normal form. Notice the expansion of attributes in the clinical trial testing institution entity. Institution Address has been replaced with Institution Street, City, State and Zip.

Slide 13
Second normal form in the normalization process eliminates deletion and insertion anomalies [uh-nohm-uh-leez] that come about when the entity has attributes that are dependent on something other than the candidate key. The second normal form not only will address deletion and insertion anomalies [uh-nohm-uh-leez] but will often help reduce the number of candidate keys in entities. Composite keys have to be evaluated carefully. The other attributes in an entity must be dependent on the entire key, not just part of a composite key.

Slide 14
In summary an entity is in second normal form when all other non-key attributes are dependent on the entire key. The normal forms build on each other. A relation in second normal form is assumed to be in first normal form.

Slide 15
Our small drug trial database is not in second normal form because there are attributes in the medication entity that are not dependent on the entire key. For instance TrialStartDate is dependent on TrialCode. It is not dependent on DrugName. This is a relatively common problem in data modeling and sometimes is not clearly evident without user interviews. The way to address this is to split the entity up so that a new entity is created to house the trial data.
Another problem that will be resolved at the same time is the many-to-many relationship between the Clinical Trial Testing Institution and Medication entities. If you recall a many-to-many relationship cannot be carried out in the database. By breaking the trial data out as a new entity and placing it between the two entities we can eliminate the many-to-many relationship. In fact if you have a many-to-many relationship in your data model it either means that you have a missing entity as we have found here or an intersection table will need to be inserted between the entities. Intersection tables do not contain any attributes except the primary keys of the two entities.

Slide 16
In this slide diagram, a Trial entity has been inserted between the two original entities and the relationships between the two original entities and the trial entity are both one-to-many. Notice that the medication entity now has only one candidate key, therefore, that candidate key is more likely to become the primary key for the Medication table. The only difference in the two relationships is minimum cardinality. The minimum cardinality for the Clinical Trial Testing Institution entity to Trial entity relationship is zero. This means that a Clinical Trial Testing Institution may not be related to a Trial. This makes sense and is probably the result of a user stating a preference for keeping Institution information in the database even if it is not performing a drug trial at all times.

Understandably, the user would not want to re-enter the institution data each time the Institution is involved in a drug trial.
The other relationship between medication and trial entities has a minimum cardinality of one. A medication must have a trial. This means that if all medication trials for a particular medication are finished then it has to be removed from the medication entity. If this has not been confirmed with the users then it should be addressed at the next meeting. Perhaps this is what they want, but if they decide to keep the medication trial data in the database it could easily be changed to a minimum cardinality of zero and carried out in the database by overriding the referential integrity constraint.

Slide 17
The third normal form eliminates deletion and insertion anomalies [uh-nohm-uh-leez] that arise from having attributes in the entity that are indirectly dependent on the key. These attributes are directly dependent on an attribute that in turn is dependent on the key. This situation is called a transitive dependency. In a deletion operation you would be deleting data in the transitive dependency along with deletion of data that is directly dependent on the key. The transitive dependency data might be data that the user wants to keep.

Slide 18
In summary an entity is in third normal form if it doesn't have any transitive dependencies. The key determines the value of all other attributes; no other attribute determines the value of another attribute.
It is assumed that if an entity is in third normal form it is also in first and second normal forms.
Most databases in existence that have been put through the normalization process are in third normal form. They are not usually in a higher level form. One reason for this is that anomalies [uh-nohm-uh-leez] addressed in normal forms above third normal form are rare. Another reason is that data retrieval speed from a database can actually be decreased by placing a database in a higher form. Database Administrators have to weigh all factors when normalizing a database. The most common complaint from users is slow access speed. Database administrators have to improve speed through trial and error testing. One option is to partially de-normalize a portion of the database and test it to see if there is any access speed improvement.

Slide 19
Our small drug trial database is not in third normal form because there is a transitive dependency on Drug Delivery Code. Drug Delivery Method is dependent on Drug Delivery Code. Drug Delivery Code is directly dependent on Drug Name, but Drug Delivery Method is only indirectly dependent on Drug Name. The way to solve this transitive dependency is to split the table and create a new table to hold the Drug Delivery Code and the Drug Delivery Method.

Slide 20
This diagram depicts our small drug trial database in third normal form. The transitive dependency attributes have been separated out into their own entity called Delivery. Delivery has a one-to-many relationship with Medication. This means that a Drug Delivery Method may be shared by many different drugs. Think of swallowing a pill to see that this should have a maximum cardinality of many. The minimum cardinality is zero. This means that a Drug Delivery Method at any given time may not be associated with any medication in the medication entity. This may seem unlikely but if it should occur the users do not want to have the Drug Delivery Method deleted from the database.

Slide 21
Since higher forms above third normal form are rare we will not go into as much detail about them, nor will we put our small database into higher forms.
Database administrators typically resort to these higher forms when a problem occurs that they think the higher forms might fix. Normalization above third normal form can result in decreasing or increasing response time. So when a slow response time has been identified, placing the section of the problematic database in a higher normalization form is worth a try. Also, it is worth the effort to de-normalize the same section of the database, perhaps taking it from third to second normal form.

Boyce-Codd is the next normal form and is related to some extent to third normal form. For a table to be in Boyce-Codd Normal Form, or BNCF, all attributes that determine other attributes must be candidate keys.
Slide 22
The next higher form is fourth normal form. It involves a multi-value dependency and fixes an update anomaly. There must be a minimum of three attributes and two of those attributes must be multi-valued. This means that the values in the attributes must repeat so that the values are not unique within the attribute. The two multi-valued attributes must be dependent on the third attribute. This situation is extremely rare, but introduces an update anomaly. The entity can be split, eliminating the multi-value dependency and the update anomaly.

Slide 23
As we proceed to higher and higher levels of normalization the possibility of situations occurring that are addressed by each level becomes more and more rare. Therefore, fifth normal form is hardly ever dealt with. This level involves a generalization of the multi-valued dependency addressed in fourth normal form. It is not only almost unheard of, but the resolution is very difficult to deal with.

Finally, Domain Key Normal Form or DKNF is a way of stating that all the rules for the other forms have been met. The only problem is that it doesn't offer a process to resolve problems like the normalization process that we have just completed.

Slide 24
The data model in the early stages helps clarify what is needed in a database. Over time the model provides a logical structure for the database that can provide all the data that all the users need. In the beginning it is necessarily unproven, probably inaccurate, and its life is extremely volatile as more and more information is gathered about the database specifications.
Eventually, however, the data model becomes less volatile and fewer surprises are encountered with additional information. When the data model reaches the last stage of life it is transformed into the final database design. Entities in the model become tables in the design, relationships will be indicated with minimum and maximum cardinality, primary keys are chosen and foreign keys are placed so as to carry out the relationships between tables.

Slide 25
Here is the final design of our small 4-table drug trial database. Primary keys are indicated with "PK" and foreign keys with "FK". Notice that there is only one primary key indicated for each table. Also notice that the foreign keys have been placed in tables that have relationships with parent tables. The Trial table has two relationships and in both it is the child of the relationship. Thus it has two foreign keys, DrugNameFK and InstitutionNameFK. The Delivery table is the parent in the relationship it has with the Medication table, so DrugDeliveryCode appears in the child table, Medication, as a foreign key.

Component 4/Unit 6-4
Health IT Workforce Curriculum
7
Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

