

Quality Improvement Tools Root Cause Analysis

- · Structured problem-solving process
- Considers all potential causal or contributing factors
 - Human factors
 - System factors
- Detailed chronological list of events surrounding incident
- Premise: one can learn from one's mistakes

Health IT Workforce Curriculum Version 2.0/Spring 2011

Component 12/Unit 12

Quality Improvement Tools Root Cause Analysis Factors to consider include: • People (knowledge, skill, abilities)

- Procedure
- · Equipment and facilities
- Communication
- Work conditions

Component 12/Unit 12

Component 12/Unit 12

Health IT Workforce Curriculum Version 2.0/Spring 2011

Root Cause Analysis

Story: I taught my 17 year old daughter how to do laundry in anticipation of her living in a college dormitory. She returned home one week-end with a total body rash and oily clothes. After taking her to the dermatologist and getting prescriptions getting prescriptions filled, I wanted to try to uncover what led to this situation.

7

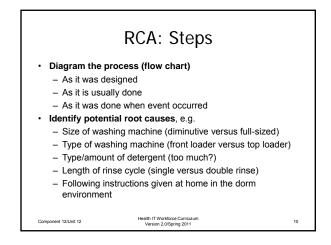
8

9

Health IT Workforce Curriculum Version 2.0/Spring 2011

RCA: Steps

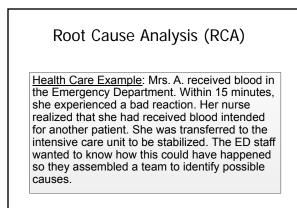
Briefly describe event


- My daughter arrived home with a total body rash and oily jeans.
- · Identify affected areas/services
 - Dorm laundry facilities

 - Our laundry facility
 Use of laundry facilities
- · Assemble a team
 - My daughter
 - Me

Component 12/Unit 12

- My daughter's dermatologist


Health IT Workforce Curriculum Version 2.0/Spring 2011

RCA: Steps

- Develop action plan, e.g.
 - Use less soap and double rinse clothes after washing
 - Responsibility: My daughter
 - Implementation date: As soon as she returns to school
 - Measurement strategy: Skin assessment when she returns home and assessment of clothes for soap residue.

Health IT Workforce Curriculum Version 2.0/Spring 2011

Component 12/Unit 12

Component 12/Unit 12

Health IT Workforce Curriculum Version 2.0/Spring 2011 11

12

RCA: Steps

· Diagram the process (flow chart)

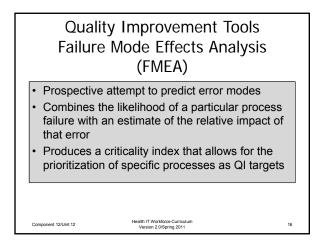
- As it was designed
- As it is usually done
- As it was done when event occurred
- · Identify potential root causes, e.g.
 - Flawed patient identification process
 - Faulty patient-blood product verification process
 - Inadequate staffing levels
 - Inadequate orientation, training or competence assessment

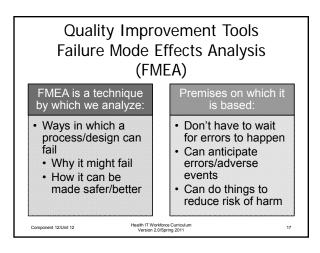
Component 12/Unit 12

Health IT Workforce Curriculum Version 2.0/Spring 2011

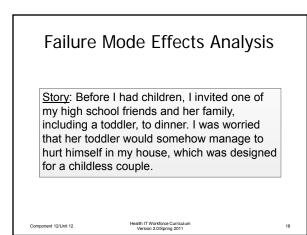
RCA: Steps

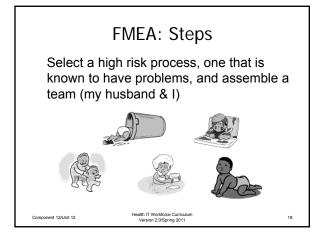
- Prioritize root causes
 - Evaluate whether these factors will cause harm in the future
 - Design interventions that reduce this probability of harm and that have a high probability of being implemented as intended given available resources (Pham et. al, 2010)
- Develop action plan, e.g.
- Implement bar-code blood product verification system - Responsibility: HIT Project Manager
- Implementation date: November 2011
- Measurement strategy: Collect data on patient misidentification errors related to blood product transfusion and compare to implementation rates.
- Evaluate results!

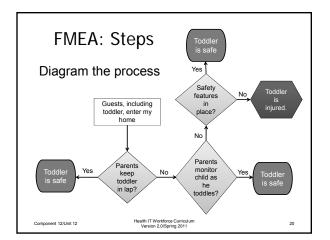

Component 12/Unit 12


Health IT Workforce Curriculum Version 2.0/Spring 2011

Version 2.0/Spring 2011


15


14



Outcome Frequency	Catastrophic (4)	Major (3)	Moderate (2)	Minor (1)
High(4)	4 X 4 = 16	4 X 3= 12	4 X 2= 8	4 X 1= 4
Moderate (3)	3 X 4 = 12	3 X 3= 9	3 X 2= 6	3 X 1= 3
Low (2)	2 X 4 = 8	2 X 3= 6	2 X 2= 4	2 X 1= 2
Remote (1)	1 X 4 = 4	1 X 3= 3	1 X 2= 2	1 X 1= 1

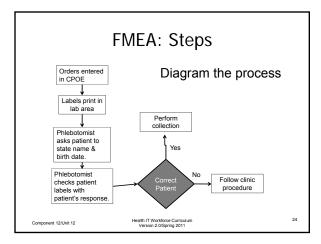
Failure Mode Effects Analysis

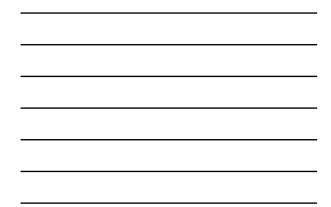
Event: After reading several articles about laboratory specimen errors that result in lab tests being done on the wrong patients, doctors at a community office practice decide to examine the potential for this problem to happen in their office laboratory.

Component 12/Unit 12

Health IT Workforce Curriculur Version 2.0/Spring 2011 22

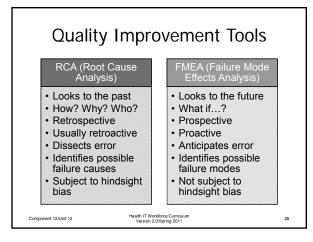
23

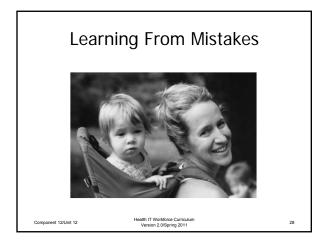

FMEA: Steps


- Select a high risk process (patient identification):
 - Affects a large number of patientsCarries a high risk for patients
 - Carries a high risk for patients
 Has known process problems identified by other
 - organizations (e.g., *Joint Commission Sentinel Event* Alert!)
- · Assemble a team

Component 12/Unit 12

- People closest to issue involved
- People critical to implementation of potential changes
- Respected, credible team leader
- Someone with decision-making authority
- People with diverse knowledge bases


Health IT Workforce Curriculum Version 2.0/Spring 2011


	Catastrophic (4)	Major (3)	Moderate (2)	Minor (1)
Frequent (4)	4 X 4 = 16	4 X 3= 12	4 X 2= 8	4 X 1= 4
Occasional (3)	3 X 4 = 12	3 X 3= 9	3 X 2= 6	3 X 1= 3
Uncommon (2)	2 X 4 = 8	2 X 3= 6	2 X 2= 4	2 X 1= 2
Remote (1)	1 X 4 = 4	1 X 3= 3	1 X 2= 2	1 X 1= 1
The higher the prevent a fai	ne number, th lure.	ie more urg	ent the need	l to

	Summary	
	sis is an effective QI tool that looks to th events and seeks to prevent these caus	
	cts analysis is another effective QI tool t ; it anticipates adverse events and look hem.	
Use of flow diagra	ms is an important skill for both of these	e processes.
HIT professionals teams.	can be valuable contributors to both RC	CA and FMEA

References

- AHRQ Patient Safety Network. Glossary. Available from: http://psnet.ahrq.gov/glossary.aspx
- Ash JS, Sittig DF, Poon EG, Guappone K, Campbell E, Dykstra RH. The extent and importance of unintended consequences related to computerized provider order entry. J Am Med Inform Assoc. 2007;14(4):415-423.
- Institute of Medicine. Patient safety. Achieving a new standard of care.
 2004 Washington, DC: National Academies Press
- Kilbridge PM, Classen DC. The informatics opportunities at the intersection of patient safety and clinical informatics. J Am Med Inform Assoc. 2008 Jul-Aug;15(4):397-407. Epub 2008 Apr 24.
- Reason J. Human error: models and management. BMJ. 320:768-770. 2000.
- Siegler EL, Adelman R. Copy and paste. A remediable hazard of electronic health records. Am J Med. 2009 Jun;122(6):495-6.

Health IT Workforce Curriculum Version 2.0/Spring 2011

Component 12/Unit 12

29