

Unit 3: Clinical Decision Support Lecture 3

Scoring and heuristics

- Knowledge is represented as profiles of findings that occur in diseases
- There are measures of importance and frequency for each finding in each disease
- Found to be most "scalable" approach for comprehensive decision support systems
- Examples - INTERNIST-1/QMR, DxPlain, Iliad

History of systems using scoring and heuristics approach

- INTERNIST-1
- Original approach, aimed to develop an expert diagnostician in internal medicine (Miller, 1982)
- System originally designed to mimic the expertise of an expert diagnostician at the University of Pittsburgh, Dr. Jack Meyers
- Evolved into Quick Medical Reference (QMR) where goal changed to using knowledge base explicitly (Miller, 1986)
- DxPlain used principles of INTERNIST-1/QMR but developed more disease coverage (Barnett, 1987)
- Only system still available:
http://lcs.mgh.harvard.edu/projects/dxplain.htm|
- Iliad attempted to add Bayesian statistics to the approach (Warner, 1989)

[^0]Health π T Worktorce Curriculum
Vession 2.0 Spring 2011

INTERNIST-1/QMR knowledge representation

- Disease profiles - findings known to reliably occur in the disease
- Findings - from history, exam, and laboratory
- Import - each finding has a measure of how important it is to explain (e.g., fever, chest pain)
- Properties - e.g., taboos, such as a male cannot get pregnant and a female cannot get prostate cancer

Component 11/Unit 3-3
Heaknirsion 2.0 Skprosing 2011

Findings in diseases

- For each finding that occurs in each disease, there are two measures
- Evoking strength - the likelihood of a disease given a finding
- Scored from 0 (finding non-specific) to 5 (pathognomonic)
- Frequency - the likelihood of a finding given a disease
- Scored from 1 (occurs rarely) to 5 (occurs in all cases)

Disease profile for acute myocardial infarction

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INTERNIST-1/QMR scoring algorithm

- Initial positive and negative findings are entered by user
- A disease hypothesis is created for any disease that has one or more of the positive findings entered
- Each disease hypothesis gets a score
- Positive component based on evoking strengths of all findings
- Negative component of score based on frequency from findings expected to occur but which are designated as absent
- A diagnosis is made if the top-ranking diagnosis is >80 points (one pathognomonic finding) above the nexthighest one
- When diagnosis made, all findings for a disease are removed from the list, and subsequent diagnoses are made
- Performed as well as experts in NEJM clinical cases (Miller, 1982)

Component 11/Unit 3-3

Limitations of INTERNIST-1 and evolution to QMR

- Limitations
- Long learning curve
- Data entry time-consuming
- Diagnostic dilemmas not a major proportion of clinician information needs
- Knowledge base incomplete
- Evolution to QMR (Miller, 1986)
- Less value in "case" mode
- More value in knowledge exploration mode, e.g.,
- Rule diseases in and out
- Obtain differential diagnoses
- Link to more detailed information
- Became commercial product but did not succeed in marketplace

Toward the modern era

- By the late 1980s and early 1990s, it was apparent that
\qquad
- Diagnostic process was too complex for computer programs
- Systems took long time to use and did not provide information that clinicians truly needed
- "Greek Oracle" model was inappropriate to medical usefulness (Miller, 1990)
- More recently
- Diagnostic decision support systems less effective than therapeutic systems (Garg, 2005)
- General failure of Al and ESs to live up to the hype of the 1980s has been acknowledged (Mullins, 2005)
- But diagnostic error still does continue, and harms patients (Garber, 2007)

Where are we headed now?

- Decision support evolved in the 1990s with \qquad recognition of their value within EHR
- Rules and algorithms most useful in this context \qquad
- Evolution from broad-based diagnostic decision support to narrower therapeutic decision support (covered in following segments)
- AMIA "roadmap" for future provides three "key pillars" (Osheroff, 2006; Osheroff, 2007)
- Best knowledge available when needed
- High adoption and effective use
- Continuous improvement of knowledge and methods \qquad

But the quest for diagnostic decision support continues

- Isabel (www.isabelhealthcare.com) - "Second generation" approach uses
- Natural language processing to map entered text into findings
- List of differential diagnosis with 30 most likely diagnoses grouped by body system, not probability
- Performance studies
- Initial development and validation for pediatrics (Ramnarayan, 2006) - reminded of one clinically important case 1 of 8 times
- Subsequently extended and evaluated in emergency department Ramnarayan, 2007) - displayed correct diagnosis 95\% of time and 90% of time showed "must-not-miss" diagnoses
- Now expanded to adult internal medicine (Graber, 2008) pasting in text from NEJM case reports had correct diagnosis suggested in 48 of 50 cases for key text and 37 of 50 cases for all text

Other continuing approaches "Googling" for a diagnosis?

- Large quantity of text in Google may hold
\qquad latent knowledge?
- Found in a case study to make diagnosis of a
\qquad rare condition (Greenwald, 2005)
- When text of NEJM cases entered, 15 of 26 \qquad had correct diagnosis in top three suggested (Tang, 2006) \qquad
\qquad
\qquad

[^0]: Component 11/Unit 3-3

