
Component 4/Unit 5-5

Audio Transcript

In this topic we’ll talk about some additional programming concepts, in particular the relationship between strong cohesive code and modularity, and we'll look again at conditional versus unconditional branching and we’ll look at a number of concepts that have to do with object-oriented programming languages such as classes, instantiation, objects, attributes and methods.

Program code is often broken up into modules or subsets of code that for various reasons, there are probably 15 or 20 reasons but a few of them in the list are – more important ones are listed here. One of them is the manageable chunks of code. So, in other words, if you have a task or a subtask that involves a lot of code, it's sometimes necessary to break that up and give it good names in the modules so that it’s easier to identify the code and know what it’s doing.

A second one is subtasks where – and this is perhaps a much more important reason so that the code within a module only deals with one task or subtask and, therefore, it’s easier to find a set of code that you’re looking for because the module name should be chosen carefully to represent what that subtask is. And then if you’re looking at just the program in terms of the modules that are in it, you can identify that module or that task where the code you’re looking for much easier. In structure design that’s usually the case that you’re taking subtasks and separating them out and you have a structure of executing those modules in such a way that it’s controlled by driver modules that execute one subtask after another in sequence.

The last reason is, today, in the advent of object-oriented languages is perhaps deemed most important which is that we are subtasking code, breaking up into modules so that we can have some modules that are strongly cohesive with loose coupling and other modules that are not. Those modules and separating the code, we do it in such a way that that’s the outcome that we have some modules that have strong cohesive of code and loose coupling. Those modules that have strong cohesive code are candidates to be methods of objects and that’s the main reason for modularity and breaking up code into subtasks that have strong cohesive code in object-oriented languages.

Okay, we might find it useful to do another problem. The one we’ve been doing which is debits and credits and finding a debit total and a count of the debits and a credit total and a credit count, but this time we’re going to modularize the code so we can see how that’s done. We need a syntax in pseudocode - this is what you're looking at, a pseudocode for that problem. We need a syntax that will show the invoking of a subprocedure and what I’ve chosen here although there’s no standard in the industry for pseudocode, I’ve chosen to use all upper case for invoking a subprocedure.

So for instance, at lines 2, 3, and 4, all those three statements although the characters are upper case, so each one of those is invoking a subprocedure and it’s doing it in such a way that it’s not an unconditional branch, it's doing it as a conditional branch. And if you remember, a conditional branch was there’s a string attached. Once the module is completed and it gets to the End module statement, it has to come back to the invoking statement. So as an example here, we’ll just take a look at how a couple of these modules are executed and then we’ll go from there.

Find Tran File at line 2 would actually be a conditional branch to line 6 where Find Tran File is located. And the only statement that’s executed is at line 7 in Find Tran File so that happens; it opens the file and then we hit the End module statement at line 8. And again because the string being attached in a conditional branch, the execution then goes back to line 2. Since line 2 is being completed, it marches down to line 3 in sequence and goes to process Trans.

One more of these and then we’ll probably be okay for how the rest of them work. We go to process Trans, which is at line 9. At line 9 to line 13, there are two statements inside of that. At line 10, it says, again in all upper case, it’s a conditional branch to Headings module. The Headings module is at line 14 so now we have two strings attached in a chain and we go to line 14. And at line 15, we output the heading. We hit line 16, which is the end of that module that sends us back to the statement that invoked us to be here, which is at line 10. At line 10, we then drop into line 11, which is again another conditional branch to Determine Totals and if you noticed, Determine Totals is at line 20 and goes to line 26. That happens to involve an iterative process, which executes and turn more conditional branches to more subprocedures but eventually, it would get done and hit line 26 and we would come back to line 11. At that point, we hit line 13. Line 12 is just a blank line so we hit line 13, which sends us back because we finished that conditional branch to line 3. So you can start to see how modularizing code into subtasks and putting them in the subprocedures and executing them, invoking them out of driver modules is how code is written with modular design.

The other thing about this is that certain modules have strong cohesion and loose coupling. Anything that has to do with the application itself would not be strong cohesion but if it’s more general than that, in other words, another application somewhere might want to open up the file and process the same transactions, therefore, for instance, the module Find Tran File at line 6 to 8 is strong cohesion and weak coupling and therefore would be a candidate for a method of an object – to become a method of an object. Also, if you look at Determine Tran Type, 27 to 37, in the second column, there’s nothing in there that is specific to the application we're writing so that code also would be possibly a candidate for a method of an object, a strong cohesive code with loose coupling.

Not all the code could fit on the previous slide so this slide is a continuation that has the report results module and a shutdown file module that, remember, we had to do before and so they’re located here.

We're going to look at the VBA solution and carry out the VBA solution that we just have the design for; that is the debit credit problem with modules, in particular with hoping to get some strongly cohesive modules that could be eligible to be methods of an object. And so not that you have to understand all the syntax here, we’re not after that; we’re just after an understanding that the code is broken up into modules and that some of those are cohesive and some are not.

The statements in lines 2 through 4, again, are the same ones we did in the design where we had all upper case. There - Find Tran File, Process Tran and Shut the Tran File Down. If we look at Find Tran File as an example that is at line 6 and it goes to line 8. Once that’s executed, it would go back just like it did in the design, it’s going to do the same thing here. There's a string attached to the conditional branch.

The other thing to draw attention here is that everything in green are statements that invoke subprocedures; everything in red are statements that are a module at a time that are strongly cohesive and therefore are candidates for methods of an object; everything in black that are modules that are in black are not strongly cohesive, they’re weakly cohesive and therefore wouldn’t be considered for methods of an object. So the Find Tran File is in red. The reason that it is a strongly cohesive module is that another application that might be written later would want to possibly process the same information in that file that we’re processing in this application and they would need to open that file as well. So there’s a need here for this code to be possibly a method of an object so it doesn’t have to be recreated in two or more applications. On the other hand, the module report results which is at line 37 through 39 is very application-specific because it’s writing to this application screen and this application screen is only for this application. It was designed for the purposes of this application so it’s very specific to the application and therefore makes this module since it writes to it weakly cohesive and not a good candidate for a method of an object.

Structure design is something that’s very important to programming. If you have a program that has spaghetti code which is sort of the antithesis of structured code, it's harder to fix, it's harder to maintain, it takes longer to understand the code. Programmers have to spend more time at it; time is money when we’re paying salaries. So spaghetti code is an expensive proposition so it’s much better to have structured code that's easy to understand and easy to fix and enhance. The term spaghetti code originally came from flowcharting where arrows are used to show transfer of control and if you transferred control hither and yon and back and forth, eventually the arrows crossed each other and got so complicated that it looked like spaghetti. It's sort of become as it says here synonymous with unstructured solution.

A structured solution therefore disallows unconditional branching which is what spaghetti code does; it branches from one part of the program and then goes to another with no strings attached. So structured code uses conditional branching. The design of the program is based on the structure, and the data being processed and the output information being generated so input and output have a tremendous influence on structured solutions. There’s usually one entry point to the program and usually only one exit point but some people believe that one exit point isn’t necessary for a good structured solution so there’s some controversy there, but one entry point and a good portion of programmers believe at one exit point.

Top-down design is really not the same thing as structured design but I put it in here because a lot of programmers use both together when designing code. Top-down design has to do with identifying processes first, not identifying detail code. So you start at the highest level and work your way down showing the subprocesses that have to occur but not actually flushing those out and designing each of those subsets you identified, in a sense black boxes; they’re going to take care of certain things but you haven’t identified how that’s going to happen. And then once you have that basic structure in place then you turn your attention to each of the black boxes and identify what they do and how they do it.

Conditional and unconditional branching are pretty important to programming and we've talked about these before but we’ll talk about them here just to make sure that these concepts are truly understood. Conditional branching, there’s a requirement to come back. I’ve been calling that a string to come back but it’s a requirement to come back to the invoking statement. It’s considered a structured programming tool. Unconditional branching on the other hand, no strings attached; you simply go to another place. In fact, go-to in a lot of programming languages is one way to carry out unconditional branching. It violates good code structure and can create spaghetti code as we’ve talked about before.

Object-oriented programming is a new paradigm of programming that we are using today, primarily in the industry. OOP stands for object-oriented programming. C++, Java, VB.net and C# are few a programming languages that are considered object-oriented. Languages like Cobol are not; that's a procedural language. Pascal, C, there’s a number of other programming languages that are not object-oriented languages. They do not have all of the things capable, all of the characteristics of an object-oriented language.

It might be useful in understanding object-oriented languages to compare them with the generation before of procedural languages. Procedural languages have modules and they have variables that pertain to one application. That is, the code was intended, was written from the outset to perform a certain chore just for one application and it was not intended when they designed or wrote code that any of the code would be used elsewhere for other applications. Object-oriented languages on the other hand, from the outset, programmers are looking to develop modules which has strong cohesion and loose coupling and those would become methods of objects, and objects are transportable from one application to another. And so instead of rewriting the code where it might be used somewhere else, it’s been put in as methods so that other applications can have access to that code and execute it. This means that the code has been tested so that multiple applications do not have to test the same code. There are a number of different advantages for object-oriented languages, and that’s why they are prevalent today.

Continuing this discussion about object-oriented languages, it's also the case that objects of classes can interact with one another in the accomplishment of a task. So if you have a number of different methods and perhaps a number of objects that need to work together in unison to accomplish a certain task, they can do that independent of the application code and sort of send messages back from one to the other and accomplish what they need to do to get the task done.

In understanding object-oriented languages, we need to understand what a class is. Classes are created for things that the user needs to keep track of. An example would be a document, a contract, people, products, employees or in an industry-specific application it might be horses at a horse-breeding farm, and the list goes on. It’s important to understand that the class is the idea or design of something. If it was an automobile, then it would be what the engineer produced in their blueprint for the automobile. The automobile hasn’t actually been produced yet but the design of the automobile and the conception of what it’s going to look like, et cetera, is in the design it has been produced and that would be analogous to the class.

Unified Modeling Language, UML as it’s more commonly referred to, is the current design methodology for class design. So we’ll take a little bit look at some UML diagrams to get an idea of what this means.

So it’s important to understand what’s in a class, what it's made up of, what is the design made up of, of a class, and it has things called methods and attributes. Attributes are similar to variables but they are descriptors of the class so, for instance, if we had an automobile, one attribute might be color. Another attribute might be weight.
[END OF AUDIO]
Component 4/Unit 5-5
Health IT Workforce Curriculum
1

Version 1.0/Fall 2010


