
Component 4/unit 3-03

Audio Transcript

Welcome to Component 4, Introduction to Information and Computer Science, Unit 3, which is entitled Computer Hardware and Architecture. A key element in understanding the field of information and computer science is understanding how a computer functions and how data is represented in memory. Along those lines, we need to understand the various input and output devices used, how these devices connect to the computer, the CPU and its role in making the whole computer system function and so on. We will explore all of those topics in Unit 3 and provide you with a good foundation so that you understand how computer functions and you'll be able to continue your education from there.
Unit objectives include gaining the ability to: list the major elements of a computer such as the motherboard, the CPU, input/output devices, memory, secondary storage, buses, expansion cards, ports and so on; describe how data is stored in memory and in secondary storage; describe how data is represented in binary; describe the function of the CPU; describe how data is input and output from a computer; describe how a computer system works together; and finally, introduce specialized architectures and embedded systems used in healthcare systems.
Now let's put this together. So yes, data is stored in binary. Well, those binary values that are stored area also stored in a specific type. Data type determines how data is stored in memory. Data is interpreted by software based on its type and so some types of data include integer numbers, for example, the whole number of 12, floating point numbers, which include whole numbers, and then numbers after the decimal point and characters. An example would be the lower case letter a.
Software engineers select a data type for each piece of data that will be stored when they design a program or even a Web form. For example, to store the number 2005 and 56 cents, the engineer would select a floating point data type to hold that type of data. Now, when we have this type of recognition of a data that's stored, this allows the computer to more quickly process the data.
Let's look at those three types of data into a little more detail. Integers are stored as binary numbers and they use something that's referred to as two's complement and this allows for the storage of negative and positive integers. You will delve into two's complement if you take advanced programming classes. Floating-point numbers are stored in floating point notation which is similar to scientific notation. It also is stored in binary. However, the exponent and the mantissa are stored in binary as well. Characters are stored in the ASCII or Unicode format. Each character, again, is represented by a binary value.
Continuing our discussion about storage for characters, the American Standard Code for Information Exchange or ASCII was created to map a set of 8-bit words to English language characters. The 8-bit word as shown here on the screen, 0100 0001, is mapped to the English language alphabet character capital A. Now, notice that I said that this is capital or uppercase A, not the lowercase a which is mapped to the 8-bit binary word of - and notice that these are different - 0110 0001. And so each one of these characters has a distinct 8-bit word with which it's associated.
Let's now turn our attention as to how an operating system can locate data that's stored in primary or secondary storage. When data is stored in primary or secondary storage, each piece of data is provided a hexadecimal physical memory address by the CPU. Whenever data is subsequently used by a program - for example, to open or save a file or a device and an example would be to print something that a user requested - then this physical address is used as its reference. File address start with the first character of the file and end with the file's last character. Characters are strung together like railroad cars that make up a train and then each car knows its head and its tail.
As a side note, the hexadecimal number system is often referred to as a base 16 system and this is because each character can represent a number in the range of zero through 15 which gives us a total of 16 numbers. In the hexadecimal numbering system, only one character can be used to represent any of these numbers. When we reach the decimal number 10 in hex, we substitute the decimal 10 for the alpha bit character A and then continue on using A, B, C, D and so on until we get to 15, which is represented by the hex character of F. It's unlikely that you'll need to translate a hexadecimal character to binary and then from binary to decimal but it's helpful to understand how these systems all work together and then the underlying logic.
And here is the data-addressing example. For example, the memory address 000 in hex has the contents in binary of 1001. The number in parentheses, 17, is not the binary equivalent of 1001 as you probably saw but its meaning is beyond the scope of our discussion. And also in memory address 101 in hex, we have a memory content in binary of 0100.
Let's turn our attention now to the CPU or the central processing unit, which is the most important computer component. The CPU, as I mentioned before, is the brain of the computer and it's responsible for the main operations of the entire computer system. The system represents everything that's on the motherboard including the motherboard and all of the devices that are connected. All the devices can typically send and receive information. They still need the CPU to process the information that they want to send and/or receive. As I mentioned before, the CPU has its own memory and this is a type of a RAM, synchronous dynamic RAM or random access memory. Modern motherboards support multiple processors or cores which makes them very fast. The term core refers to all CPU components such as the ALU, the control unit and the CPU's ram or SD RAM. As an example, the AMD Phenom II 6 core processor is six CPUs in one boxed unit.
As you imagined, the CPU is very busy. The main function of the CPU is to execute instructions and these are made up of arithmetic instructions, adding, subtracting, multiplication and so on. The CPU also loads and stores instructions which is where it gets values from memory or stores values in memory and then there are branch instructions. For instance, to move to another part of a program and then come back to that part of the program when the small instruction set is performed.
The ALU or arithmetic logic unit performs arithmetic operations. Operands are stored in registers. Some CPUs contain more than one ALU so that more than one math operation can be done at a time. Another CPU component is the control unit, which manages all the things being done by the processor. It fetches the next instruction and then decodes this so that the CPU can operate on that instruction. And then we also have registers, which are fast temporary storage for use by the CPU. These are connected to the ALU and to the actual CPU memory. And if you study computer programming, you'll learn for example on the assemble language, you'll learn how to store values in these registers as well as to retrieve them and then to operate on them using registers.
Continuing on with our CPU components, we have memory as I mentioned previously and this is the synchronous dynamic RAM, which is superfast RAM reserved for the specific use of the processor. And then finally, we have buses. We referred to motherboard buses previously but the CPU has a number of buses as well and these buses are used to carry data between CPU components.
Now let's put it all together. The CPU executes instructions one at a time and is never idle. Step one, the CPU through the use of its control unit fetches an instruction from memory and then is able to keep track of a location of the current instruction through the use of something called a program counter. The CPU needs to know which instruction is being operated on and it also needs to know the address of the next instruction. Step two, the CPU through the use of its control unit decodes the instruction. As it finishes the decoding of the instruction, the values are placed in one of its registers. Next, the CPU executes the instruction and so if the instruction was math-related, then it will call upon functionality and its arithmetic logic unit or ALU. Next, the CPU will write back the result so that it's saved, it will be put in RAM somewhere for some program to take advantage of the result and then the CPU returns to step one and fetches the next instruction. These five steps make up one instruction cycle. The image on this slide gives us a logical view of how the CPU operates. We have the instruction fetcher at the top, the instruction being decoded and placed in registers and the ALU performing some type of an operation and writing the result either into some memory interface, RAM, a hard disk or even to registers for further execution.
Now that we've covered the motherboard, input/output devices, RAM, hard disks, the CPU, motherboard buses and CPU buses, we can look at this logically in a diagram. So here you see the CPU which has access to the motherboard's data and address bus which gives it access to the memory and to input/output devices.
When we think of CPU performance, we have to keep in mind that CPUs operate at superfast speeds. In fact, we can’t really fathom the speed at which a CPU performs. A 2 gigahertz CPU operates at the speed of 2 billion operations per second. This helps you appreciate why there has to be a fan on top of the CPU. Imagine all the heat generated on all of those copper wires as the CPU quickly performs all of these tasks.
Well, the CPU improves its performance through creation of processes and threads. Okay, are you ready for the difference between the two? A process is a running program such as Microsoft Word. A thread is a specific task running within a process. For example, Word may save changes to a file and then subsequently print that file. Each of these operations represents a thread within Word's process. Threads can exist in a number of states at any given time and we'll just list a couple here. A thread may be running, waiting, stopped or blocked. There are lots of states. In advanced programming classes, you will learn how to program an operation so that it can help work with the functionality of the CPU and keep the CPU at a fast pace.

On our previous slide, you no doubt noticed that some threads can be blocked and wondered why would a thread be blocked? Well, if a thread might be blocked because it represents a request to print something and the printer is currently busy, then the CPU passes its attention to another process or thread and waits for the blocked thread to interrupt it for execution. In this case, the blocked thread enters the resume state so that it can print. This process gives the appearance that the CPU is performing more than one operation at a time when in fact, it never does so. If you have one CPU on your motherboard, that CPU can only do one thing at a time. Although it's a given that if you have a 2 gigahertz CPU, it's performing 2 billion operations in one second.
For a number of years, it seemed that functionality of CPUs grew at an exponential rate and so many of us were afraid to purchase a computer for fear that a couple of months later, what we bought would be obsolete. Today's motherboards support multiple CPUs which are referred to as cores. These CPUs are housed within one physical CPU that's installed on the motherboard. Some motherboards support installation of multiple physical CPUs on a single motherboard, each containing more than one core. So in this case, the computer itself would actually be performing more than one thing at a time. This is an evolving technology as CPU vendors such as AMD and Intel work to produce more efficient CPUs without significantly changing motherboard architecture.
You may have noticed that when we referred to what is saved on a hard drive, we used the term data. We've not used the term information to refer to what's stored on a hard drive or hard disk. So now, we have to differentiate between the two. Data is information stored on a computer in binary format. You should recall that each character, which would be a pixel or other object, is represented by 8 bits or 1 byte when it is operated on or stored by the CPU. This is the definition of data. Information is not the same thing as data. Data has no meaning or value since data is just a number, character or so on that's stored on a hard disk. Information is data presented so that it has meaning. For example, the capital letter U which would be stored on a hard disk is meaningless by itself. However, when this piece of data is presented as a string of text in the format of United States of America, it becomes information and has meaning.
To be sure, we've covered a lot of information in this unit. Now, let's try to put it all together. A computer system is made up of the hardware including the CPU, RAM and input/output devices as well as the operating system or OS software installed on a computer. Examples of devices that contain an operating system includes cell phones, PDAs, robots and robotic devices, routers, switches, laptops and computers and by computers we mean desktops, servers and web servers. An operating system is made up of thousands of computer programs that securely manage how hardware interacts with non-OS which is referred to as application software installed on the computer. Google Earth is application software and as you’re probably aware, Google Earth is a free program that a user can install on a computer that already has an operating system installed. Microsoft Word is a commercial application in the Microsoft Office suite of programs. Again, you will install Microsoft Word on a computer that has an operating system installed.
Medical imaging done in CT and MRI scans require specialized CPU architectures. For example, the GE Healthcare CT750 HD Computed Tomography Scanner scans and stores hundreds of terabytes of data at a time. This type of equipment which features Intel's Xeon-based CPU must discern the soft tissue and organs at almost a molecular level in real time. For that type of functionality, the CPU has to be optimized for speed and performance. Obviously, desktop and server CPUs cannot provide this type of performance.
‘

Let's take a couple of moments to review the things that we've talked about in this unit. In this unit, you learned the major elements of a computer include the CPU, input/output devices, memory, buses and ports. System components include the motherboard, CPU, motherboard slots and expansion ports. A computer is made up of hardware and software. Computers only understand binary numbers. The motherboard is made up of copper wires which are known as buses. You learned that the motherboard buses are the address, control and data buses. Input/output port types include the mouse, keyboard, monitor, USB and other ports. Storage devices can be internal or external and include hard disk drives and RAM. Input devices include the keyboard, mouse, an MRI device, a CT scanner and others. Output devices include the monitor, printers, flash drives, ultrasound images, voice synthesizers and other devices. Data stored in RAM is volatile which means that when the computer loses power, whatever was stored in RAM is lost. Data stored on a hard disk drive is non-volatile meaning that when the computer is turned off, whatever was saved will not be lost. Data is stored in electronic binary format and binary numbers are either in the state of on or off. You learned that the most important component in the computer is the CPU and it is made up of an ALU, control unit and SD RAM. The CPU operates by use of instruction cycles. The CPU improves its performance through the use of processes and threads. We also learned that data is different than information. Finally, you learned that healthcare equipment requires the use of specialized CPU architecture. Special CPUs are required to process, analyze and store the large amount of data created via 3D scanners and other medical equipment.
[END OF AUDIO]
Component 4/Unit 3-03
Health IT Workforce Curriculum
1

Version 1.0/Fall 2010

